A160399
a(n) = Sum_{k=1..n} binomial(n,k) * d(k), where d(k) = the number of positive divisors of k.
Original entry on oeis.org
1, 4, 11, 27, 62, 137, 296, 630, 1326, 2768, 5744, 11867, 24429, 50135, 102627, 209641, 427518, 870579, 1770536, 3596614, 7298397, 14796658, 29974913, 60681233, 122767148, 248232863, 501648844, 1013257334, 2045684971
Offset: 1
-
List([1..10^3], n -> Sum([1..n], k -> Binomial(n,k) * Number(DivisorsInt(k)))); # Muniru A Asiru, Feb 04 2018
-
[&+[Binomial(n,k)*NumberOfDivisors(k):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Nov 12 2019
-
[&+[&+[Binomial(n,i*j):j in [1..n]]:i in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
-
with(numtheory): seq(sum(binomial(n, k)*tau(k), k = 1 .. n), n = 1 .. 30); # Emeric Deutsch, May 15 2009
A160399 := proc(n) local k; add(binomial(n,k)*numtheory[tau](k),k=1..n) ; end: seq(A160399(n),n=1..40) ; # R. J. Mathar, May 17 2009
-
a[n_] := Sum[Binomial[n, k]*DivisorSigma[0, k], {k, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 25 2017 *)
-
a(n) = sum(k=1, n, binomial(n, k)*numdiv(k)); \\ Michel Marcus, Feb 25 2017
Original entry on oeis.org
0, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812
Offset: 0
Let {} denote a set, [] a list and Z an unlabeled element.
a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
-
with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
-
Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
-
{a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ Paul D. Hanna, Apr 21 2010
-
{a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ Paul D. Hanna, Feb 04 2012
-
Vec(1/eta('x/(1-'x)+O('x^66))) \\ Joerg Arndt, Jul 30 2011
I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (
A000041 without the a(0) term). -
N. J. A. Sloane, May 18 2007
A306988
a(n) = Sum_{k=1..n} binomial(n,k)*phi(k), where phi is the Euler totient function.
Original entry on oeis.org
1, 3, 8, 20, 49, 117, 272, 620, 1395, 3107, 6852, 14964, 32395, 69647, 149002, 317712, 675749, 1433769, 3033444, 6396320, 13437913, 28130869, 58708304, 122239396, 254141275, 527946013, 1096312050, 2275897660, 4722500707, 9791471587, 20277706762, 41932520528
Offset: 1
-
Table[Sum[Binomial[n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 40}]
A320568
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*sigma(k).
Original entry on oeis.org
1, 1, -2, 5, -14, 40, -111, 293, -731, 1726, -3882, 8408, -17796, 37423, -79337, 170917, -373812, 823585, -1809844, 3934750, -8424747, 17749392, -36874749, 75862016, -155359339, 318331170, -655146929, 1356952623, -2828151136, 5920984735, -12420140296, 26036563525
Offset: 1
-
Flat(List([1..10],n->Sum([1..n],k->(-1)^(n-k)*Binomial(n,k)*Sigma(k)))); # Muniru A Asiru, Oct 15 2018
-
seq(add((-1)^(n-k)*binomial(n,k)*sigma(k),k=1..n),n=1..32); # Paolo P. Lava, Oct 25 2018
-
Table[Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[1, k], {k, n}], {n, 32}]
nmax = 32; Rest[CoefficientList[Series[1/(1 + x) Sum[k x^k/((1 + x)^k - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
A356038
a(n) = Sum_{k=1..n} binomial(n,k) * sigma_2(k).
Original entry on oeis.org
1, 7, 28, 95, 286, 802, 2143, 5519, 13807, 33762, 81060, 191678, 447396, 1032647, 2360593, 5351231, 12041764, 26920297, 59829006, 132262550, 290990077, 637429514, 1390811841, 3023647046, 6551547161, 14151910442, 30481920523, 65480947739, 140318385088, 299995596747
Offset: 1
-
with(numtheory): seq(add(sigma[2](i)*binomial(n,i),i=1..n), n=1..60); # Ridouane Oudra, Oct 25 2022
-
Table[Sum[Binomial[n, k] * DivisorSigma[2, k], {k, 1, n}], {n, 1, 40}]
-
a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 2)); \\ Michel Marcus, Jul 24 2022
A222115
a(n) = 1 + Sum_{k=1..n} binomial(n,k) * sigma(k).
Original entry on oeis.org
2, 6, 17, 46, 117, 285, 674, 1558, 3536, 7911, 17503, 38377, 83501, 180480, 387882, 829606, 1766999, 3749766, 7931115, 16724871, 35173778, 73794661, 154485528, 322771345, 673155142, 1401536935, 2913490376, 6047714600, 12536770559, 25956242580, 53678385267, 110889844998
Offset: 1
L.g.f.: L(x) = 2*x + 6*x^2/2 + 17*x^3/3 + 46*x^4/4 + 117*x^5/5 + 285*x^6/6 +...
where
exp(L(x)) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...+ A218481(n)*x^n +...
-
Table[Sum[Binomial[n,k]DivisorSigma[1,k],{k,n}],{n,40}]+1 (* Harvey P. Dale, Jul 21 2015 *)
-
{a(n)=1+sum(k=1,n,binomial(n,k)*sigma(k))}
for(n=1,30,print1(a(n),", "))
-
{a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(m=1, n+1, x^m/((1-x)^m-X^m)/m), n)}
-
{a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(k=1, n, k*log(1-X)-log((1-x)^k-X^k)), n)}
-
{a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m), n)}
-
{a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(k=1, n, valuation(2*k, 2)*log(1 + x^k/(1-X)^k)), n)}
A308555
Expansion of e.g.f. Sum_{k>=1} sigma(k)*(exp(x) - 1)^k/k!, where sigma = sum of divisors (A000203).
Original entry on oeis.org
1, 4, 14, 53, 222, 1011, 4944, 25884, 144963, 865556, 5477661, 36518635, 255323564, 1867122987, 14259709474, 113593734317, 942317654779, 8123227487723, 72599829900774, 671199117610868, 6407156027307909, 63061416571124056, 639303956718643041, 6670690645674913424
Offset: 1
-
b:= proc(n, m) option remember; uses numtheory;
`if`(n=0, sigma(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Aug 03 2021
-
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[StirlingS2[n, k] DivisorSigma[1, k], {k, 1, n}], {n, 1, 24}]
A320586
Expansion of (1/(1 - x)) * Sum_{k>=1} k*x^k/(x^k + (1 - x)^k).
Original entry on oeis.org
1, 3, 10, 27, 66, 156, 365, 843, 1909, 4238, 9274, 20136, 43564, 94013, 202155, 432475, 919820, 1945767, 4098852, 8610922, 18061277, 37844128, 79212323, 165565920, 345412341, 719047566, 1493488927, 3095654281, 6405734456, 13238611241, 27336762272, 56416256443, 116376652600
Offset: 1
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1/(1 +-x))*(&+[k*x^k/(x^k + (1 - x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 30 2018
-
seq(coeff(series((1/(1-x))*add(k*x^k/(x^k+(1-x)^k),k=1..n),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Oct 16 2018
-
nmax = 33; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^k/(x^k + (1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 33; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x/(1 - x)]^4 + EllipticTheta[2, 0, x/(1 - x)]^4 - 1)/(24 (1 - x)), {x, 0, nmax}], x]]
Table[Sum[Binomial[n, k] Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}], {k, n}], {n, 33}]
-
m=50; x='x+O('x^m); Vec((1/(1 - x))*sum(k=1, m+2, k*x^k/(x^k + (1 - x)^k))) \\ G. C. Greubel, Oct 30 2018
A324915
a(n) = Sum_{k=1..n} 2^k * sigma(k), where sigma(k) = A000203(k).
Original entry on oeis.org
2, 14, 46, 158, 350, 1118, 2142, 5982, 12638, 31070, 55646, 170334, 285022, 678238, 1464670, 3496286, 5855582, 16079198, 26564958, 70605150, 137714014, 288708958, 490035550, 1496668510, 2536855902, 5355428190, 10724137310, 25756522846, 41862650206, 119172061534
Offset: 1
-
Accumulate[Table[2^k*DivisorSigma[1, k], {k, 1, 30}]]
A330088
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k) * sigma(n - k + 1), where sigma = A000203.
Original entry on oeis.org
1, 9, 43, 155, 511, 1442, 4131, 10323, 28171, 63987, 171667, 369395, 957958, 2047694, 5078963, 10671529, 26542339, 53522031, 132273403, 268623854, 647842889, 1266118858, 3197923083, 6058756355, 14581380971, 29480406552, 68634048862, 131847974143, 323289015466, 611887749996
Offset: 1
-
[&+[Binomial(n,k)*DivisorSigma(1,k)*DivisorSigma(1,n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
-
Table[Sum[Binomial[n, k] DivisorSigma[1, k] DivisorSigma[1, n - k + 1], {k, 1, n}], {n, 1, 30}]
nmax = 30; CoefficientList[Series[(1/2) D[Sum[DivisorSigma[1, k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = sum(k=1, n, binomial(n,k)*sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Dec 05 2019
Showing 1-10 of 14 results.
Comments