cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A160399 a(n) = Sum_{k=1..n} binomial(n,k) * d(k), where d(k) = the number of positive divisors of k.

Original entry on oeis.org

1, 4, 11, 27, 62, 137, 296, 630, 1326, 2768, 5744, 11867, 24429, 50135, 102627, 209641, 427518, 870579, 1770536, 3596614, 7298397, 14796658, 29974913, 60681233, 122767148, 248232863, 501648844, 1013257334, 2045684971
Offset: 1

Views

Author

Leroy Quet, May 12 2009

Keywords

Comments

Binomial transform of the sequence d(n) (A000005). - Emeric Deutsch, May 15 2009
Apparently the partial sums of A101509. - R. J. Mathar, May 17 2009

Crossrefs

Cf. A000005. - Emeric Deutsch, May 15 2009

Programs

  • GAP
    List([1..10^3], n -> Sum([1..n], k -> Binomial(n,k) * Number(DivisorsInt(k)))); # Muniru A Asiru, Feb 04 2018
    
  • Magma
    [&+[Binomial(n,k)*NumberOfDivisors(k):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Nov 12 2019
    
  • Magma
    [&+[&+[Binomial(n,i*j):j in [1..n]]:i in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
  • Maple
    with(numtheory): seq(sum(binomial(n, k)*tau(k), k = 1 .. n), n = 1 .. 30); # Emeric Deutsch, May 15 2009
    A160399 := proc(n) local k; add(binomial(n,k)*numtheory[tau](k),k=1..n) ; end: seq(A160399(n),n=1..40) ; # R. J. Mathar, May 17 2009
  • Mathematica
    a[n_] := Sum[Binomial[n, k]*DivisorSigma[0, k], {k, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 25 2017 *)
  • PARI
    a(n) = sum(k=1, n, binomial(n, k)*numdiv(k)); \\ Michel Marcus, Feb 25 2017
    

Formula

G.f.: (Sum_{k>=1} (x/(1-x))^k/(1-x^k/(1-x)^k))/(1-x). - Emeric Deutsch, May 15 2009
E.g.f.: exp(x)*Sum_{k>=1} d(k)*x^k/k!. - Ilya Gutkovskiy, Nov 26 2017
a(n) = 2^n*(log(n) + 2*gamma - log(2)) + O(2^n*n^(-1/4)). [Put alpha_n = beta_n = 1/2 in Thm. 4.2 of Schmidt.] - Eric M. Schmidt, Feb 03 2018
a(n) = Sum_{i=1..n} Sum_{j=1..n} binomial(n,i*j). - Ridouane Oudra, Nov 12 2019

Extensions

More terms from Emeric Deutsch and R. J. Mathar, May 15 2009

A103446 Unlabeled analog of A025168.

Original entry on oeis.org

0, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812
Offset: 0

Views

Author

Thomas Wieder, Feb 06 2005; revised Feb 20 2006

Keywords

Comments

Or, if the initial 0 is omitted, this is the binomial transform of the partition numbers p(1), p(2), ... = 1, 2, 3, 5, 7, 11, 15, 22, 30, ... (A000041 without the initial 1).
The most precise definition of this sequence is the Maple combstruct command given below. See the first Wieder link for further details.
Sequence appears to have a rational o.g.f. - Ralf Stephan, May 18 2007
For n>0, row sums of triangle A137151. - Gary W. Adamson, Jan 23 2008
a(n) = A218482(n) for n>=1; see A218482 for more formulas.

Examples

			Let {} denote a set, [] a list and Z an unlabeled element.
a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
    allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
  • Mathematica
    Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ Paul D. Hanna, Apr 21 2010
    
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ Paul D. Hanna, Feb 04 2012
    
  • PARI
    Vec(1/eta('x/(1-'x)+O('x^66))) \\ Joerg Arndt, Jul 30 2011

Formula

O.g.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x)^n/n ) - 1. - Paul D. Hanna, Apr 21 2010
O.g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k)*sigma(k) ) - 1. - Paul D. Hanna, Feb 04 2012
O.g.f. P(x/(1-x)), where P(x) is the o.g.f. for number of partitions (A000041) a(n)=sum_{k=1,n} ( binomial(n-1,k-1)*A000041(k)). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

Extensions

I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (A000041 without the a(0) term). - N. J. A. Sloane, May 18 2007

A306988 a(n) = Sum_{k=1..n} binomial(n,k)*phi(k), where phi is the Euler totient function.

Original entry on oeis.org

1, 3, 8, 20, 49, 117, 272, 620, 1395, 3107, 6852, 14964, 32395, 69647, 149002, 317712, 675749, 1433769, 3033444, 6396320, 13437913, 28130869, 58708304, 122239396, 254141275, 527946013, 1096312050, 2275897660, 4722500707, 9791471587, 20277706762, 41932520528
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 18 2019

Keywords

Crossrefs

Partial sums of A131045.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 40}]

Formula

a(n) ~ 3 * n * 2^n / Pi^2.

A320568 a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*sigma(k).

Original entry on oeis.org

1, 1, -2, 5, -14, 40, -111, 293, -731, 1726, -3882, 8408, -17796, 37423, -79337, 170917, -373812, 823585, -1809844, 3934750, -8424747, 17749392, -36874749, 75862016, -155359339, 318331170, -655146929, 1356952623, -2828151136, 5920984735, -12420140296, 26036563525
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

Inverse binomial transform of A000203.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->Sum([1..n],k->(-1)^(n-k)*Binomial(n,k)*Sigma(k))));  # Muniru A Asiru, Oct 15 2018
  • Maple
    seq(add((-1)^(n-k)*binomial(n,k)*sigma(k),k=1..n),n=1..32); # Paolo P. Lava, Oct 25 2018
  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[1, k], {k, n}], {n, 32}]
    nmax = 32; Rest[CoefficientList[Series[1/(1 + x) Sum[k x^k/((1 + x)^k - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: (1/(1 + x))*Sum_{k>=1} k*x^k/((1 + x)^k - x^k).
L.g.f.: Sum_{k>=1} sigma(k)*x^k/(k*(1 + x)^k) = Sum_{n>=1} a(n)*x^n/n.
Conjecture: a(n) ~ (-1)^n * Pi^2/48 * n * 2^n. - Vaclav Kotesovec, Oct 16 2018

A356038 a(n) = Sum_{k=1..n} binomial(n,k) * sigma_2(k).

Original entry on oeis.org

1, 7, 28, 95, 286, 802, 2143, 5519, 13807, 33762, 81060, 191678, 447396, 1032647, 2360593, 5351231, 12041764, 26920297, 59829006, 132262550, 290990077, 637429514, 1390811841, 3023647046, 6551547161, 14151910442, 30481920523, 65480947739, 140318385088, 299995596747
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 24 2022

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma[2](i)*binomial(n,i),i=1..n), n=1..60); # Ridouane Oudra, Oct 25 2022
  • Mathematica
    Table[Sum[Binomial[n, k] * DivisorSigma[2, k], {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 2)); \\ Michel Marcus, Jul 24 2022

Formula

a(n) ~ zeta(3) * n^2 * 2^(n-2).
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i^2)*binomial(n,i*j). - Ridouane Oudra, Oct 25 2022

A222115 a(n) = 1 + Sum_{k=1..n} binomial(n,k) * sigma(k).

Original entry on oeis.org

2, 6, 17, 46, 117, 285, 674, 1558, 3536, 7911, 17503, 38377, 83501, 180480, 387882, 829606, 1766999, 3749766, 7931115, 16724871, 35173778, 73794661, 154485528, 322771345, 673155142, 1401536935, 2913490376, 6047714600, 12536770559, 25956242580, 53678385267, 110889844998
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2013

Keywords

Comments

Here sigma(n) is the sum of divisors of n (A000203).

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 17*x^3/3 + 46*x^4/4 + 117*x^5/5 + 285*x^6/6 +...
where
exp(L(x)) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...+ A218481(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]DivisorSigma[1,k],{k,n}],{n,40}]+1 (* Harvey P. Dale, Jul 21 2015 *)
  • PARI
    {a(n)=1+sum(k=1,n,binomial(n,k)*sigma(k))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(m=1, n+1, x^m/((1-x)^m-X^m)/m), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(k=1, n, k*log(1-X)-log((1-x)^k-X^k)), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(-log(1-X)+sum(k=1, n, valuation(2*k, 2)*log(1 + x^k/(1-X)^k)), n)}

Formula

Logarithmic derivative of the binomial transform of the partition numbers (A218481).
L.g.f.: -log(1-x) + Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n.
L.g.f.: -log(1-x) + Sum_{n>=1} x^n/((1-x)^n - x^n) / n.
L.g.f.: -log(1-x) + Sum_{n>=1} n*log(1-x) - log((1-x)^n - x^n).
L.g.f.: -log(1-x) + Sum_{n>=1} A001511(n) * log(1 + x^n/(1-x)^n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) = A185003(n) + 1.
a(n) ~ Pi^2/12 * n * 2^n. - Vaclav Kotesovec, Dec 30 2015

A308555 Expansion of e.g.f. Sum_{k>=1} sigma(k)*(exp(x) - 1)^k/k!, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 4, 14, 53, 222, 1011, 4944, 25884, 144963, 865556, 5477661, 36518635, 255323564, 1867122987, 14259709474, 113593734317, 942317654779, 8123227487723, 72599829900774, 671199117610868, 6407156027307909, 63061416571124056, 639303956718643041, 6670690645674913424
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Comments

Stirling transform of A000203.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; uses numtheory;
         `if`(n=0, sigma(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[StirlingS2[n, k] DivisorSigma[1, k], {k, 1, n}], {n, 1, 24}]

Formula

G.f.: Sum_{k>=1} sigma(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*sigma(k).

A320586 Expansion of (1/(1 - x)) * Sum_{k>=1} k*x^k/(x^k + (1 - x)^k).

Original entry on oeis.org

1, 3, 10, 27, 66, 156, 365, 843, 1909, 4238, 9274, 20136, 43564, 94013, 202155, 432475, 919820, 1945767, 4098852, 8610922, 18061277, 37844128, 79212323, 165565920, 345412341, 719047566, 1493488927, 3095654281, 6405734456, 13238611241, 27336762272, 56416256443, 116376652600
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

Binomial transform of A000593.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1/(1 +-x))*(&+[k*x^k/(x^k + (1 - x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series((1/(1-x))*add(k*x^k/(x^k+(1-x)^k),k=1..n),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 33; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^k/(x^k + (1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 33; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x/(1 - x)]^4 + EllipticTheta[2, 0, x/(1 - x)]^4 - 1)/(24 (1 - x)), {x, 0, nmax}], x]]
    Table[Sum[Binomial[n, k] Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}], {k, n}], {n, 33}]
  • PARI
    m=50; x='x+O('x^m); Vec((1/(1 - x))*sum(k=1, m+2, k*x^k/(x^k + (1 - x)^k))) \\ G. C. Greubel, Oct 30 2018
    

Formula

G.f.: (theta_3(x/(1 - x))^4 + theta_2(x/(1 - x))^4 - 1)/(24*(1 - x)), where theta_() is the Jacobi theta function.
L.g.f.: Sum_{k>=1} A000593(k)*x^k/(k*(1 - x)^k) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{k=1..n} binomial(n,k)*A000593(k).
Conjecture: a(n) ~ c * 2^n * n, where c = Pi^2/24 = 0.411233516712... - Vaclav Kotesovec, Jun 26 2019

A324915 a(n) = Sum_{k=1..n} 2^k * sigma(k), where sigma(k) = A000203(k).

Original entry on oeis.org

2, 14, 46, 158, 350, 1118, 2142, 5982, 12638, 31070, 55646, 170334, 285022, 678238, 1464670, 3496286, 5855582, 16079198, 26564958, 70605150, 137714014, 288708958, 490035550, 1496668510, 2536855902, 5355428190, 10724137310, 25756522846, 41862650206, 119172061534
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[2^k*DivisorSigma[1, k], {k, 1, 30}]]

A330088 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k) * sigma(n - k + 1), where sigma = A000203.

Original entry on oeis.org

1, 9, 43, 155, 511, 1442, 4131, 10323, 28171, 63987, 171667, 369395, 957958, 2047694, 5078963, 10671529, 26542339, 53522031, 132273403, 268623854, 647842889, 1266118858, 3197923083, 6058756355, 14581380971, 29480406552, 68634048862, 131847974143, 323289015466, 611887749996
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2019

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n,k)*DivisorSigma(1,k)*DivisorSigma(1,n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
    
  • Mathematica
    Table[Sum[Binomial[n, k] DivisorSigma[1, k] DivisorSigma[1, n - k + 1], {k, 1, n}], {n, 1, 30}]
    nmax = 30; CoefficientList[Series[(1/2) D[Sum[DivisorSigma[1, k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = sum(k=1, n, binomial(n,k)*sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Dec 05 2019

Formula

E.g.f.: (1/2) * d/dx (Sum_{k>=1} sigma(k) * x^k / k!)^2.
Showing 1-10 of 14 results. Next