cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A334582 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^3.

Original entry on oeis.org

1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 6685158287808000, 6685158287808000, 53481266302464000, 262753461344005632000, 262753461344005632000
Offset: 1

Views

Author

Petros Hadjicostas, May 06 2020

Keywords

Comments

For n = 1 to n = 13, a(n) = A195506(n), but a(14) = 6685158287808000 <> 46796108014656000 = A195506(14).
Lim_{n -> infinity} A136675(n)/a(n) = A197070.

Examples

			The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = A136675/A334582.
		

Crossrefs

Cf. A136675 (numerators), A195506, A197070.

Programs

  • Maple
    b := proc(n) local k: add((-1)^(k + 1)/k^3, k = 1 .. n): end proc:
    seq(denom(b(n)), n=1..30);
  • Mathematica
    Denominator @ Accumulate[Table[(-1)^(k + 1)/k^3, {k, 1, 18}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020

Extensions

Offset changed to 1 by Georg Fischer, Jul 13 2023

A347059 Decimal expansion of the Dirichlet eta function at 9.

Original entry on oeis.org

9, 9, 8, 0, 9, 4, 2, 9, 7, 5, 4, 1, 6, 0, 5, 3, 3, 0, 7, 6, 7, 7, 8, 3, 0, 3, 1, 8, 5, 2, 5, 9, 7, 9, 5, 0, 8, 7, 4, 3, 3, 3, 9, 5, 3, 5, 3, 7, 8, 7, 7, 4, 7, 2, 3, 4, 3, 3, 2, 8, 6, 6, 0, 3, 7, 8, 8, 8, 7, 4, 5, 5, 5, 2, 5, 4, 5, 2, 7, 0, 2, 0, 7, 9, 4, 9, 3
Offset: 0

Views

Author

Sean A. Irvine, Aug 14 2021

Keywords

Examples

			0.998094297541605330767783031852597950...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[DirichletEta[9],87]]] (* Stefano Spezia, Aug 15 2021 *)
  • PARI
    -polylog(9, -1) \\ Michel Marcus, Aug 15 2021

Formula

Equals (255/256) * zeta(9).
Equals Sum_{k>=1} (-1)^(k+1) / k^9.
Equals eta(9).

A347150 Decimal expansion of the Dirichlet eta function at 8.

Original entry on oeis.org

9, 9, 6, 2, 3, 3, 0, 0, 1, 8, 5, 2, 6, 4, 7, 8, 9, 9, 2, 2, 7, 2, 8, 9, 2, 6, 0, 0, 8, 2, 8, 0, 3, 6, 1, 7, 8, 7, 4, 1, 2, 5, 1, 5, 9, 4, 7, 2, 8, 9, 8, 0, 6, 7, 0, 4, 5, 2, 8, 9, 0, 2, 9, 1, 9, 4, 3, 5, 9, 6, 4, 8, 2, 5, 7, 7, 5, 8, 5, 8, 9, 2, 8, 2, 8, 2, 4
Offset: 0

Views

Author

Sean A. Irvine, Aug 19 2021

Keywords

Examples

			0.9962330018526478992272892600828036178741251594728980...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    RealDigits[DirichletEta[8], 10, 100][[1]] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    -polylog(8, -1) \\ Michel Marcus, Aug 20 2021

Formula

Equals (127/128) * zeta(8).
Equals 127 * Pi^8 / 1209600.
Equals Sum_{k>=1} (-1)^(k+1) / k^8.
Equals eta(8).

A349220 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.

Original entry on oeis.org

0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 3.

Examples

			0.0597059061601953583634292662879256783169268731565...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021

Formula

Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.

A097449 If n is a cube, replace it with the cube root of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 3, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

Cino Hilliard, Aug 23 2004

Keywords

Examples

			The 9th integer is 8 so a(9) = 8^(1/3) = 2.
		

Crossrefs

Programs

  • Mathematica
    rcr[n_]:=Module[{crn=Power[n, (3)^-1]},If[IntegerQ[crn],crn,n]]; Array[ rcr,80,0] (* Harvey P. Dale, Jan 28 2012 *)
  • PARI
    iscube(n) = { local(r); r = n^(1/3); if(floor(r+.5)^3== n,1,0) }
    replcube(n) = { for(x=0,n, if(iscube(x),y=x^(1/3),y=x); print1(floor(y)",")) }
    
  • PARI
    a(n)=ispower(n,3,&n);n \\ Charles R Greathouse IV, Oct 27 2011

Formula

Sum_{n>=1} (-1)^(n+1)/n = 2*log(2) - 3*zeta(3)/4 = A016627 - A197070. - Amiram Eldar, Jul 07 2024

Extensions

Corrected by T. D. Noe, Oct 25 2006

A346927 Decimal expansion of the Dirichlet eta function at 10.

Original entry on oeis.org

9, 9, 9, 0, 3, 9, 5, 0, 7, 5, 9, 8, 2, 7, 1, 5, 6, 5, 6, 3, 9, 2, 2, 1, 8, 4, 5, 6, 9, 9, 3, 4, 1, 8, 3, 1, 4, 2, 5, 9, 2, 9, 6, 4, 9, 6, 6, 6, 8, 9, 0, 6, 4, 7, 1, 0, 6, 8, 9, 4, 8, 7, 5, 5, 0, 6, 1, 4, 2, 4, 5, 8, 3, 8, 4, 0, 3, 8, 1, 2, 4, 4, 0, 7, 9, 8, 5
Offset: 0

Views

Author

Sean A. Irvine, Aug 07 2021

Keywords

Examples

			0.999039507598271565639221845699341831425929649666890...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    RealDigits[DirichletEta[10], 10, 100][[1]] (* Amiram Eldar, Aug 08 2021 *)
  • PARI
    -polylog(10, -1) \\ Michel Marcus, Aug 08 2021

Formula

Equals 73 * Pi^10 / (2^9 * 3^5 * 5 * 11).
Equals (511/512) * zeta(10).
Equals Sum_{k>=1} (-1)^(k+1) / k^10.
Equals eta(10).

A275689 Decimal expansion of 3*zeta(3)/(4*log(2)).

Original entry on oeis.org

1, 3, 0, 0, 6, 5, 1, 1, 4, 9, 7, 9, 1, 0, 1, 8, 7, 0, 3, 3, 2, 3, 8, 6, 3, 9, 5, 8, 2, 6, 0, 3, 5, 6, 5, 3, 9, 9, 7, 5, 3, 8, 2, 3, 7, 3, 3, 8, 0, 6, 1, 9, 1, 3, 6, 3, 5, 1, 2, 2, 6, 2, 5, 3, 2, 4, 8, 9, 8, 9, 5, 2, 5, 4, 3, 9, 4, 6, 2, 0, 7, 7, 6, 4, 7, 2, 9, 1, 6, 8, 3, 6, 3, 4, 6, 9, 3, 6, 8, 7
Offset: 1

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Comments

As it appears that the Sum {n>=1} (-1)^(n+1)/n^2 / Sum {n>=1} ((-1)^(n+1))/n^1 is the inverse of Levy's constant, or more traditionally the log of Levy's constant (A100199), this sequence which is equal to Sum {n>=1} (-1)^(n+1)/n^3 / Sum {n>=1} ((-1)^(n+1))/n^1 may be the inverse of the log of another constant with similar properties.

Examples

			1.300651149791018703323...
		

Crossrefs

Programs

Formula

3*zeta(3)/4*log(2) = A197070 / A002162 = Sum {n>=1} (-1)^(n+1)/n^3 / Sum {n>=1} ((-1)^(n+1))/n^1

A246967 Decimal expansion of the real positive solution to eta(x) = x.

Original entry on oeis.org

6, 2, 9, 3, 3, 4, 0, 9, 4, 0, 0, 9, 3, 7, 2, 7, 6, 7, 5, 5, 6, 4, 8, 0, 5, 0, 2, 5, 8, 9, 3, 2, 6, 1, 3, 7, 6, 4, 7, 2, 0, 7, 6, 4, 6, 8, 6, 6, 1, 8, 5, 3, 5, 5, 0, 6, 8, 8, 5, 8, 0, 2, 3, 1, 9, 7, 2, 6, 9, 2, 8, 5, 2, 9, 1, 5, 5, 7, 4, 6, 2, 1, 1, 0, 4, 2, 0, 0, 7, 9, 7, 5, 5, 6, 1, 9, 4
Offset: 0

Views

Author

Michal Paulovic, Sep 08 2014

Keywords

Comments

Fixed point of Dirichlet eta function.

Examples

			0.6293340940...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[DirichletEta[x] - x, {x, 0}, WorkingPrecision -> 120], 10, 100] [[1]] (* Amiram Eldar, May 24 2021 *)
  • PARI
    solve(n=0,2,(1-2^(1-n))*zeta(n)-n) \\ Edward Jiang, Sep 08 2014

A269444 Continued fraction expansion of the Dirichlet eta function at 3.

Original entry on oeis.org

0, 1, 9, 6, 2, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 7, 2, 1, 1, 1, 2, 91, 32, 1, 1, 6, 23, 1, 1, 1, 1, 2, 9, 1, 2, 1, 1, 5, 1, 1, 37, 12, 1, 12, 3, 2, 87, 1, 4, 2, 2, 2, 320, 1, 7, 1, 2, 6, 3, 1, 6, 4, 1, 4, 2, 1, 69, 1, 4, 3, 3, 1, 14, 3, 1, 3, 1, 10, 2, 694, 2, 4, 21, 1, 1, 1, 3, 3, 10, 2, 1, 2, 2, 1, 3, 5, 1, 3, 9, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Comments

Continued fraction expansion of Sum_{k>=1} (-1)^(k - 1)/k^3 = (3*zeta(3))/4 = 0.901542677369695714...

Examples

			1/1^3 - 1/2^3 + 1/3^3 - 1/4^3 + 1/5^3 - 1/6^3 +... = 1/(1 + 1/(9 + 1/(6 + 1/(2 + 1/(1 + 1/(1 + 1/...)))))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[(3 Zeta[3])/4, 100]

A275688 Decimal expansion of 9*zeta(3)/(Pi^2*log(2)).

Original entry on oeis.org

1, 5, 8, 1, 4, 0, 2, 1, 6, 8, 0, 3, 1, 1, 2, 2, 9, 4, 5, 3, 4, 2, 9, 8, 7, 9, 8, 7, 4, 4, 0, 5, 8, 5, 4, 1, 9, 5, 1, 8, 5, 9, 8, 3, 8, 8, 9, 0, 3, 8, 0, 8, 4, 6, 0, 2, 9, 3, 0, 2, 4, 5, 2, 7, 5, 3, 4, 8, 1, 4, 7, 0, 1, 2, 4, 7, 7, 6, 2, 7, 9, 0, 9, 9, 6, 9, 6, 8, 2, 7, 8, 1, 1, 5, 3, 1, 0, 5, 0, 4, 9, 6, 0, 6, 7
Offset: 1

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Examples

			9*Zeta(3)/(Pi^2*log(2)) = 1.5814021680311229....
		

Crossrefs

Programs

Formula

9*zeta(3)/(Pi^2*log(2)) = ((3*zeta(3))/4)/((Pi^2)/(12*log(2))) =
A197070/A100199 = [Sum {n>=1} (-1)^(n+1)/n^3] / [( Sum_{n>=1} (-1)^(n+1)/n^2 ) / ( Sum_{n>=1} (-1)^(n+1)/n )].

Extensions

Corrected and extended by Rick L. Shepherd, Nov 23 2016
Previous Mathematica program replaced by Harvey P. Dale, Jun 06 2022
Previous Showing 11-20 of 23 results. Next