cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A074829 Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 8, 7, 5, 8, 12, 15, 15, 12, 8, 13, 20, 27, 30, 27, 20, 13, 21, 33, 47, 57, 57, 47, 33, 21, 34, 54, 80, 104, 114, 104, 80, 54, 34, 55, 88, 134, 184, 218, 218, 184, 134, 88, 55, 89, 143, 222, 318, 402, 436, 402, 318, 222, 143, 89
Offset: 1

Views

Author

Joseph L. Pe, Sep 30 2002

Keywords

Examples

			The first and second Fibonacci numbers are 1, 1, so the first and second rows of the triangle are 1; 1 1; respectively. The third row of the triangle begins and ends with the third Fibonacci number, 2 and the middle term is the sum of the contiguous two terms in the second row, i.e., 1 + 1 = 2, so the third row is 2 2 2.
Triangle begins:
   1;
   1,  1;
   2,  2,  2;
   3,  4,  4,   3;
   5,  7,  8,   7,   5;
   8, 12, 15,  15,  12,   8;
  13, 20, 27,  30,  27,  20, 13;
  21, 33, 47,  57,  57,  47, 33, 21;
  34, 54, 80, 104, 114, 104, 80, 54, 34;
  ...
Formatted as a symmetric triangle:
                           1;
                        1,    1;
                     2,    2,    2;
                  3,    4,    4,    3;
               5,    7,    8,    7,    5;
            8,   12,   15,   15,   12,    8;
        13,   20,   27,   30,   27,   20,   13;
     21,   33,   47,   57,   57,   47,   33,   21;
  34,   54,   80,  104,  114,  104,   80,   54,   34;
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A105809, A108617, A109906, A111006, A114197, A162741, A228074.
Cf. A074878 (row sums).

Programs

  • GAP
    T:= function(n,k)
        if k=1 then return Fibonacci(n);
        elif k=n then return Fibonacci(n);
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 12 2019
  • Haskell
    a074829 n k = a074829_tabl !! (n-1) !! (k-1)
    a074829_row n = a074829_tabl !! (n-1)
    a074829_tabl = map fst $ iterate
       (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [u]))) ([1], [1,1])
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Maple
    A074829 := proc(n,k)
        option remember ;
        if k=1 or k=n then
            combinat[fibonacci](n) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc:
    seq(seq(A074829(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Mar 31 2025
  • Mathematica
    T[n_, 1]:= Fibonacci[n]; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    T(n,k) = if(k==1 || k==n, fibonacci(n), T(n-1,k-1) + T(n-1,k));
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    def T(n, k):
        if (k==1 or k==n): return fibonacci(n)
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 12 2019
    

Extensions

More terms from Philippe Deléham, Sep 20 2006
Data error in 7th row fixed by Reinhard Zumkeller, Aug 15 2013

A162741 Fibonacci-Pascal triangle; same as Pascal triangle, but beginning another Pascal triangle to the right of each row starting at row 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Mark Dols, Jul 12 2009, Jul 19 2009

Keywords

Comments

Intertwined Pascal-triangles;
the first five rows seen as numbers in decimal representation: row(n) = 110*row(n-1) + 1. - corrected by Reinhard Zumkeller, Jul 16 2013

Examples

			.                                           1
.                                       1,  1, 1
.                                   1,  2,  2, 1, 1
.                               1,  3,  4,  3, 2, 1, 1
.                           1,  4,  7,  7,  5, 3, 2, 1, 1
.                       1,  5, 11, 14, 12,  8, 5, 3, 2, 1, 1
.                   1,  6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1,1
.               1,  7, 22, 41, 51, 46, 33, 21,13, 8, 5, 3, 2,1,1
.           1,  8, 29, 63, 92, 97, 79, 54, 34,21,13, 8, 5, 3,2,1,1
.       1,  9, 37, 92,155,189,176,133, 88, 55,34,21,13, 8, 5,3,2,1,1
.    1,10, 46,129,247,344,365,309,221,143, 89,55,34,21,13, 8,5,3,2,1,1
. 1,11,56,175,376,591,709,674,530,364,232,144,89,55,34,21,13,8,5,3,2,1,1 .
		

Crossrefs

Cf. A005408 (row length), A000225 (row sums), A000045 (central terms), A007318, A136431.
Cf. A021113. - Mark Dols, Jul 18 2009
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A228074.

Programs

  • Haskell
    a162741 n k = a162741_tabf !! (n-1) !! (k-1)
    a162741_row n = a162741_tabf !! (n-1)
    a162741_tabf = iterate
       (\row -> zipWith (+) ([0] ++ row ++ [0]) (row ++ [0,1])) [1]
    -- Reinhard Zumkeller, Jul 16 2013
  • Mathematica
    T[, 1] = 1; T[n, k_] /; k == 2*n-2 || k == 2*n-1 = 1; T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 9}, {k, 1, 2*n-1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Reinhard Zumkeller *)

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k), T(n,1)=1 and for n>1: T(n,2*n-2) = T(n,2*n-1)=1. - Reinhard Zumkeller, Jul 16 2013

A105809 Riordan array (1/(1 - x - x^2), x/(1 - x)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 7, 7, 4, 1, 8, 12, 14, 11, 5, 1, 13, 20, 26, 25, 16, 6, 1, 21, 33, 46, 51, 41, 22, 7, 1, 34, 54, 79, 97, 92, 63, 29, 8, 1, 55, 88, 133, 176, 189, 155, 92, 37, 9, 1, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10, 1, 144, 232, 364, 530, 674, 709, 591
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Previous name was: A Fibonacci-Pascal matrix.
From Wolfdieter Lang, Oct 04 2014: (Start)
In the column k of this triangle (without leading zeros) is the k-fold iterated partial sums of the Fibonacci numbers, starting with 1. A000045(n+1), A000071(n+3), A001924(n+1), A014162(n+1), A014166(n+1), ..., n >= 0. See the Riordan property.
For a combinatorial interpretation of these iterated partial sums see the H. Belbachir and A. Belkhir link. There table 1 shows in the rows these columns. In their notation (with r = k) f^(k)(n) = T(k, n+k).
The A-sequence of this Riordan triangle is [1, 1] (see the recurrence for T(n, k), k >= 1, given in the formula section). The Z-sequence is A165326 = [1, repeat(1, -1)]. See the W. Lang link under A006232 for Riordan A- and Z-sequences. (End)

Examples

			The triangle T(n,k) begins:
n\k   0   1   2    3    4    5    6    7    8   9  10 11 12 13 ...
0:    1
1:    1   1
2:    2   2   1
3:    3   4   3    1
4:    5   7   7    4    1
5:    8  12  14   11    5    1
6:   13  20  26   25   16    6    1
7:   21  33  46   51   41   22    7    1
8:   34  54  79   97   92   63   29    8    1
9:   55  88 133  176  189  155   92   37    9   1
10:  89 143 221  309  365  344  247  129   46  10   1
11: 144 232 364  530  674  709  591  376  175  56  11  1
12: 233 376 596  894 1204 1383 1300  967  551 231  67 12  1
13: 377 609 972 1490 2098 2587 2683 2267 1518 782 298 79 13  1
... reformatted and extended - _Wolfdieter Lang_, Oct 03 2014
------------------------------------------------------------------
Recurrence from Z-sequence (see a comment above): 8 = T(0,5) = (+1)*5 + (+1)*7 + (-1)*7 + (+1)*4 + (-1)*1 = 8. - _Wolfdieter Lang_, Oct 04 2014
		

Crossrefs

Cf. A165326 (Z-sequence), A027934 (row sums), A010049(n+1) (antidiagonal sums), A212804 (alternating row sums), inverse is A105810.
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A109906, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a105809 n k = a105809_tabl !! n !! k
    a105809_row n = a105809_tabl !! n
    a105809_tabl = map fst $ iterate
       (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [0]))) ([1], [1,1])
    -- Reinhard Zumkeller, Aug 15 2013
  • Maple
    T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([1,k/2-n/2,k/2-n/2+1/2], [k+1,-n], -4)); for n from 0 to 13 do seq(simplify(T(n,k)),k=0..n) od; # Peter Luschny, Oct 10 2014
  • Mathematica
    T[n_, k_] := Sum[Binomial[n-j, k+j], {j, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)

Formula

Riordan array (1/(1-x-x^2), x/(1-x)).
Triangle T(n, k) = Sum_{j=0..n} binomial(n-j, k+j); T(n, 0) = A000045(n+1);
T(n, m) = T(n-1, m-1) + T(n-1, m).
T(n, k) = Sum_{j=0..n} binomial(j, n+k-j). - Paul Barry, Oct 23 2006
G.f. of row polynomials Sum_{k=0..n} T(n, k)*x^k is (1 - z)/((1 - z - z^2)*(1 - (1 + x)*z)) (Riordan property). - Wolfdieter Lang, Oct 04 2014
T(n, k) = binomial(n, k)*hypergeom([1, k/2 - n/2, k/2 - n/2 + 1/2],[k + 1, -n], -4) for n > 0. - Peter Luschny, Oct 10 2014
From Wolfdieter Lang, Feb 13 2025: (Start)
Array A(k, n) = Sum_{j=0..n} F(j+1)*binomial(k-1+n-j, k-1), k >= 0, n >= 0, with F = A000045, (from Riordan triangle k-th convolution in columns without leading 0s).
A(k, n) = F(n+1+2*k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n+1+j, j), (from iteration of partial sums).
Triangle T(n, k) = A(k, n-k) = Sum_{j=k..n} F(n-j+1) * binomial(j-1, k-1), 0 <= k <= n.
T(n, k) = F(n+1+k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n - (k-1-j), j). (End)
T(n, k) = A027926(n, n+k), for 0 <= k <= n. - Wolfdieter Lang, Mar 08 2025

Extensions

Use first formula as a more descriptive name, Joerg Arndt, Jun 08 2021

A014166 Apply partial sum operator 4 times to Fibonacci numbers.

Original entry on oeis.org

0, 1, 5, 16, 41, 92, 189, 365, 674, 1204, 2098, 3588, 6050, 10093, 16703, 27476, 44995, 73440, 119575, 194345, 315460, 511576, 829060, 1342936, 2174596, 3520457, 5698329, 9222440, 14924829, 24151764, 39081553
Offset: 0

Views

Author

Keywords

Crossrefs

Right-hand column 8 of triangle A011794.

Programs

  • GAP
    List([0..30], n-> Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6); # G. C. Greubel, Sep 06 2019
  • Magma
    [Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6: n in [0..30]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    with(combinat); seq(fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6, n = 0..30); # G. C. Greubel, Sep 06 2019
  • Mathematica
    Nest[Accumulate, Fibonacci[Range[0, 30]], 4] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    a(n)=fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 for n in (0..30)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Fibonacci(n+8) - (n^3 +12*n^2 +59*n +126)/6.
G.f.: x/((1-x)^4*(1-x-x^2)).

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A114197 A Pascal-Fibonacci triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 31, 21, 6, 1, 1, 7, 31, 61, 61, 31, 7, 1, 1, 8, 43, 106, 142, 106, 43, 8, 1, 1, 9, 57, 169, 286, 286, 169, 57, 9, 1, 1, 10, 73, 253, 520, 659, 520, 253, 73, 10, 1
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

T(2n,n) is A114198. Row sums are A114199. Row sums of inverse are 0^n.

Examples

			Triangle begins
  1;
  1,   1;
  1,   2,   1;
  1,   3,   3,   1;
  1,   4,   7,   4,   1;
  1,   5,  13,  13,   5,   1;
  1,   6,  21,  31,  21,   6,   1;
  1,   7,  31,  61,  61,  31,   7,   1;
  1,   8,  43, 106, 142, 106,  43,   8,   1;
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Formula

As a number triangle, T(n,k) = Sum_{j=0..n-k} C(n-k, j)C(k, j)F(j);
As a number triangle, T(n,k) = Sum_{j=0..n} C(n-k, n-j)C(k, j-k)F(j-k);
As a number triangle, T(n,k) = Sum_{j=0..n} C(k, j)C(n-k, n-j)F(k-j) if k <= n, 0 otherwise.
As a square array, T(n,k) = Sum_{j=0..n} C(n, j)C(k, j)F(j);
As a square array, T(n,k) = Sum_{j=0..n+k} C(n, n+k-j)C(k, j-k)F(j-k);
Column k has g.f.: (Sum_{j=0..k} C(k, j)F(j+1)(x/(1-x))^j)*x^k/(1-x);
G.f.: -((x^2-x)*y-x+1)/((x^4+x^3-x^2)*y^2+(x^3-3*x^2+2*x)*y-x^2+2*x-1). - Vladimir Kruchinin, Jan 15 2018

A014162 Apply partial sum operator thrice to Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 11, 25, 51, 97, 176, 309, 530, 894, 1490, 2462, 4043, 6610, 10773, 17519, 28445, 46135, 74770, 121115, 196116, 317484, 513876, 831660, 1345861, 2177872, 3524111, 5702389, 9226935, 14929789
Offset: 0

Views

Author

Keywords

Comments

With offset 4, number of 132-avoiding two-stack sortable permutations which contain exactly one subsequence of type 51234.

Crossrefs

Right-hand column 6 of triangle A011794.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+6) - (n^2 + 7*n + 16)/2); # G. C. Greubel, Sep 05 2019
  • Magma
    [Fibonacci(n+6) - (n^2 + 7*n + 16)/2: n in [0..40]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    with(combinat); seq(fibonacci(n+6)-(n^2+7*n+16)*(1/2), n = 0..40); # G. C. Greubel, Sep 05 2019
  • Mathematica
    Nest[Accumulate,Fibonacci[Range[0,30]],3] (* or *) LinearRecurrence[{4,-5,1,2,-1},{0,1,4,11,25},40] (* Harvey P. Dale, Aug 19 2017 *)
  • PARI
    a(n)=fibonacci(n+6)-n*(n+7)/2-8 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [fibonacci(n+6) - (n^2 + 7*n + 16)/2 for n in (0..40)] # G. C. Greubel, Sep 05 2019
    

Formula

a(n) = Sum_{k=0..n} A000045(n-k)*k*(k+1)/2. - Benoit Cloitre, Jan 06 2003
G.f.: x/((1-x)^3*(1-x-x^2)).
From Paul Barry, Oct 07 2004: (Start)
a(n-2) = Sum_{k=0..floor(n/2)} binomial(n-k, k+3).
a(n-2) = Sum_{k=0..n} binomial(k, n-k+3). (End)
Convolution of A000045 and A000217 (Fibonacci and triangular numbers). - Ross La Haye, Nov 08 2004
a(n) = Fibonacci(n+6) - (n^2 + 7*n + 16)/2.

A109906 A triangle based on A000045 and Pascal's triangle: T(n,m) = Fibonacci(n-m+1) * Fibonacci(m+1) * binomial(n,m).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 5, 12, 24, 12, 5, 8, 25, 60, 60, 25, 8, 13, 48, 150, 180, 150, 48, 13, 21, 91, 336, 525, 525, 336, 91, 21, 34, 168, 728, 1344, 1750, 1344, 728, 168, 34, 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55, 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 24 2008

Keywords

Comments

Row sums give A081057.

Examples

			Triangle T(n,k) begins:
   1;
   1,   1;
   2,   2,    2;
   3,   6,    6,    3;
   5,  12,   24,   12,     5;
   8,  25,   60,   60,    25,     8;
  13,  48,  150,  180,   150,    48,    13;
  21,  91,  336,  525,   525,   336,    91,   21;
  34, 168,  728, 1344,  1750,  1344,   728,  168,   34;
  55, 306, 1512, 3276,  5040,  5040,  3276, 1512,  306,  55;
  89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89;
  ...
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a109906 n k = a109906_tabl !! n !! k
    a109906_row n = a109906_tabl !! n
    a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl
    -- Reinhard Zumkeller, Aug 15 2013
  • Maple
    f:= n-> combinat[fibonacci](n+1):
    T:= (n, k)-> binomial(n, k)*f(k)*f(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 26 2023
  • Mathematica
    Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

T(n,m) = Fibonacci(n-m+1)*Fibonacci(m+1)*binomial(n,m).
T(n,k) = A058071(n,k) * A007318(n,k). - Reinhard Zumkeller, Aug 15 2013

Extensions

Offset changed by Reinhard Zumkeller, Aug 15 2013

A053295 Partial sums of A053739.

Original entry on oeis.org

1, 7, 29, 92, 247, 591, 1300, 2683, 5270, 9955, 18228, 32551, 56967, 98086, 166681, 280271, 467301, 773906, 1274856, 2091266, 3419252, 5576298, 9076280, 14750858, 23945893, 38839257, 62955061, 101995694
Offset: 0

Views

Author

Barry E. Williams, Mar 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Right-hand column 12 of triangle A011794.
Cf. A228074.

Programs

  • Magma
    [(&+[Binomial(n+6-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
  • Mathematica
    Table[Sum[Binomial[n+6-j, n-2*j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
  • PARI
    for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+6-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
    

Formula

a(n) = Sum_{i=0..floor(n/2)} C(n+6-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+5,5); n >= 0; a(-1)=0.
G.f.: -1 / ( (x^2 + x - 1)*(x-1)^6 ). - R. J. Mathar, Oct 10 2014

A053739 Partial sums of A014166.

Original entry on oeis.org

1, 6, 22, 63, 155, 344, 709, 1383, 2587, 4685, 8273, 14323, 24416, 41119, 68595, 113590, 187030, 306605, 500950, 816410, 1327986, 2157046, 3499982, 5674578, 9195035, 14893364, 24115804, 39040633, 63192397, 102273950, 165512723, 267839033, 433410661, 701315739, 1134800215
Offset: 0

Views

Author

Barry E. Williams, Feb 13 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A014166 and A000045.
Right-hand column 10 of triangle A011794.
Cf. A228074.

Programs

  • GAP
    List([0..35], n-> Fibonacci(n+11)-(n^4+22*n^3+203*n^2+974*n + 2112)/24); # G. C. Greubel, Sep 06 2019
  • Magma
    [Fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24: n in [0..35]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    with(combinat); seq(fibonacci(n+11)-(n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!, n = 0..35); # G. C. Greubel, Sep 06 2019
  • Mathematica
    Table[Fibonacci[n+11] -(n^4+22*n^3+203*n^2+974*n+2112)/4!, {n,0,35}] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    vector(35, n, m=n-1; fibonacci(n+10) - (m^4+22*m^3+203*m^2+974*m +2112)/4!) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24 for n in (0..35)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = Sum_{i=0..floor(n/2)} binomial(n+5-i, n-2*i) for n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+4,4); n >= 0; a(-1)=0.
G.f.: 1/((1-x-x^2)*(1-x)^5). - R. J. Mathar, May 22 2013
a(n) = Fibonacci(n+11) - (n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!. - G. C. Greubel, Sep 06 2019

Extensions

Terms a(28) onward added by G. C. Greubel, Sep 06 2019
Previous Showing 11-20 of 34 results. Next