cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 95 results. Next

A327472 Number of integer partitions of n not containing their mean.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 6, 13, 16, 25, 34, 54, 56, 99, 121, 154, 201, 295, 324, 488, 541, 725, 957, 1253, 1292, 1892, 2356, 2813, 3378, 4563, 4838, 6840, 7686, 9600, 12076, 14180, 15445, 21635, 25627, 29790, 33309, 44581, 48486, 63259, 70699, 82102, 104553, 124752
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Examples

			The a(3) = 1 through a(8) = 16 partitions not containing their mean:
  (21)  (31)   (32)    (42)     (43)      (53)
        (211)  (41)    (51)     (52)      (62)
               (221)   (411)    (61)      (71)
               (311)   (2211)   (322)     (332)
               (2111)  (3111)   (331)     (422)
                       (21111)  (421)     (431)
                                (511)     (521)
                                (2221)    (611)
                                (3211)    (3311)
                                (4111)    (5111)
                                (22111)   (22211)
                                (31111)   (32111)
                                (211111)  (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The Heinz numbers of these partitions are A327476.
Partitions with their mean are A237984.
Subsets without their mean are A327471.
Subsets with n but without their mean are A327477.
Strict partitions without their mean are A240851.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,Mean[#]]&]],{n,0,20}]
  • Python
    from sympy.utilities.iterables import partitions
    def A327472(n): return sum(1 for s,p in partitions(n,size=True) if n%s or n//s not in p) if n else 1 # Chai Wah Wu, Sep 21 2023

A362610 Number of integer partitions of n having a unique part of least multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

Alternatively, these are partitions with a part appearing fewer times than each of the others.

Examples

			The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of multiplicities we have A002865, ranks A247180.
For median instead of co-mode we have A238478, complement A238479.
These partitions have ranks A359178.
For mode complement of co-mode we have A362607, ranks A362605.
For mode instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362609, ranks A362606.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023

A359894 Number of integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(8) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)
         (311)   (3111)   (331)     (422)
         (2111)  (21111)  (421)     (431)
                          (511)     (521)
                          (2221)    (611)
                          (3211)    (4211)
                          (4111)    (5111)
                          (22111)   (22211)
                          (31111)   (32111)
                          (211111)  (41111)
                                    (221111)
                                    (311111)
                                    (2111111)
		

Crossrefs

The complement is counted by A240219.
These partitions are ranked by A359890, complement A359889.
The odd-length case is ranked by A359892, complement A359891.
The odd-length case is A359896, complement A359895.
The strict case is A359898, complement A359897.
The odd-length strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284 and A058398 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.
A359909 counts factorizations with the same mean as median, odd-len A359910.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]

A362607 Number of integer partitions of n with more than one mode.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 13, 13, 23, 23, 33, 45, 56, 64, 90, 101, 137, 169, 208, 246, 320, 379, 469, 567, 702, 828, 1035, 1215, 1488, 1772, 2139, 2533, 3076, 3612, 4333, 5117, 6113, 7168, 8557, 10003, 11862, 13899, 16385, 19109, 22525, 26198, 30729, 35736
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9).
The a(3) = 1 through a(9) = 9 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)
              (41)  (51)    (52)   (62)    (63)
                    (321)   (61)   (71)    (72)
                    (2211)  (421)  (431)   (81)
                                   (521)   (432)
                                   (3311)  (531)
                                           (621)
                                           (32211)
                                           (222111)
		

Crossrefs

For parts instead of multiplicities we have A002865.
For median instead of mode we have A238479, complement A238478.
These partitions have ranks A362605.
The complement is counted by A362608, ranks A356862.
For co-mode we have A362609, ranks A362606.
For co-mode complement we have A362610, ranks A359178.
A000041 counts integer partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..51);  # Alois P. Heinz, May 05 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}]
  • PARI
    G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k)))));
    concat([0,0,0],Vec(sum(u=1,N, A_x(u))))}
    G_x(51) \\ John Tyler Rascoe, Apr 05 2024

Formula

G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - John Tyler Rascoe, Apr 05 2024

A349156 Number of integer partitions of n whose mean is not an integer.

Original entry on oeis.org

1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
By conjugation, also the number of integer partitions of n with greatest part not dividing n.

Examples

			The a(3) = 1 through a(8) = 11 partitions:
  (21)  (211)  (32)    (2211)   (43)      (332)
               (41)    (3111)   (52)      (422)
               (221)   (21111)  (61)      (431)
               (311)            (322)     (521)
               (2111)           (331)     (611)
                                (421)     (22211)
                                (511)     (32111)
                                (2221)    (41111)
                                (3211)    (221111)
                                (4111)    (311111)
                                (22111)   (2111111)
                                (31111)
                                (211111)
		

Crossrefs

Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !A051293.
The complement is counted by A067538, ranked by A316413.
The geometric version is !A067539, strict !A326625, ranked by !A326623.
The strict case is !A102627.
The version for prime factors is A175352, complement A078175.
The version for distinct prime factors is A176587, complement A078174.
The ordered version (compositions) is !A271654, ranked by !A096199.
The multiplicative version (factorizations) is !A326622, geometric !A326028.
The conjugate is ranked by !A326836.
The conjugate strict version is !A326850.
These partitions are ranked by A348551.
A000041 counts integer partitions.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A236634 counts unbalanced partitions, complement of A047993.
A327472 counts partitions not containing their mean, complement of A237984.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]

Formula

a(n > 0) = A000041(n) - A067538(n).

A362612 Number of integer partitions of n such that the greatest part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 6, 6, 7, 9, 10, 12, 15, 16, 19, 23, 26, 32, 37, 41, 48, 58, 65, 75, 88, 101, 115, 135, 151, 176, 200, 228, 261, 300, 336, 385, 439, 498, 561, 641, 717, 818, 921, 1036, 1166, 1321, 1477, 1667, 1867, 2099, 2346, 2640, 2944, 3303, 3684
Offset: 0

Views

Author

Gus Wiseman, May 03 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(10) = 7 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    221    33      331      44        333        55
              1111  11111  222     2221     332       441        442
                           111111  1111111  2222      3321       3331
                                            22211     22221      22222
                                            11111111  111111111  222211
                                                                 1111111111
		

Crossrefs

For median instead of mode we have A053263, complement A237821.
These partitions have ranks A362616.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362607 counts partitions with more than one mode, ranks A362605.
A362608 counts partitions with a unique mode, ranks A356862.
A362611 counts modes in prime factorization.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Commonest[#]=={Max[#]}&]],{n,0,30}]
  • PARI
    A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, sum(j=1, N/i, x^(i*j)*prod(k=1,i-1,(1-x^(j*k))/(1-x^k))))); concat([0],Vec(g))}
    A_x(60) \\ John Tyler Rascoe, Apr 03 2024

Formula

G.f.: Sum_{i, j>0} x^(i*j) * Product_{k=1,i-1} ((1-x^(j*k))/(1-x^k)). - John Tyler Rascoe, Apr 03 2024

A237824 Number of partitions of n such that 2*(least part) >= greatest part.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n whose greatest part appears at a middle position, namely at k/2, (k+1)/2, or (k+2)/2 where k is the number of parts. These partitions have ranks A362622. - Gus Wiseman, May 14 2023

Examples

			a(6) = 7 counts these partitions:  6, 42, 33, 222, 2211, 21111, 111111.
From _Gus Wiseman_, May 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (322)      (53)
                    (1111)  (2111)   (222)     (2221)     (332)
                            (11111)  (2211)    (22111)    (422)
                                     (21111)   (211111)   (2222)
                                     (111111)  (1111111)  (22211)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (2211)    (2221)     (332)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
(End)
		

Crossrefs

The complement is counted by A237820, ranks A362982.
For modes instead of middles we have A362619, counted by A171979.
These partitions have ranks A362981.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *)
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 13 2025 *)
    (* or *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^k/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
  • PARI
    N=60; x='x+O('x^N);
    gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i))));
    Vec(gf) \\ John Tyler Rascoe, Mar 07 2024

Formula

G.f.: Sum_{m>0} x^m/(1-x^m) + Sum_{i>0} Sum_{j=1..i} x^((2*i)+j) / Product_{k=0..j} (1 - x^(k+i)). - John Tyler Rascoe, Mar 07 2024
G.f.: Sum_{k>=1} x^k / Product_{j=k..2*k} (1 - x^j). - Vaclav Kotesovec, Jun 13 2025
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4) * sqrt(2*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 14 2025

A363723 Number of integer partitions of n having a unique mode equal to the mean, i.e., partitions whose mean appears more times than each of the other parts.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 60, 15, 18, 37, 60, 2, 129, 2, 104, 80, 35, 104, 352, 2, 49, 168, 501, 2, 556, 2, 489, 763, 92, 2, 1799, 292, 985, 649, 1296, 2, 2233, 1681, 3379, 1204, 225, 2, 10661
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = 6, 8, 12, 14, 16 (A..G = 10..16):
  (6)       (8)         (C)             (E)               (G)
  (33)      (44)        (66)            (77)              (88)
  (222)     (2222)      (444)           (2222222)         (4444)
  (111111)  (3221)      (3333)          (3222221)         (5443)
            (11111111)  (4332)          (3322211)         (6442)
                        (5331)          (4222211)         (7441)
                        (222222)        (11111111111111)  (22222222)
                        (322221)                          (32222221)
                        (422211)                          (33222211)
                        (111111111111)                    (42222211)
                                                          (52222111)
                                                          (1111111111111111)
		

Crossrefs

Partitions containing their mean are counted by A237984, ranks A327473.
For median instead of mode we have A240219, ranks A359889.
Partitions missing their mean are counted by A327472, ranks A327476.
The case of non-constant partitions is A362562.
Including median also gives A363719, ranks A363727.
Allowing multiple modes gives A363724.
Requiring multiple modes gives A363731.
For median instead of mean we have A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Mean[#]}==modes[#]&]],{n,30}]

A348551 Heinz numbers of integer partitions whose mean is not an integer.

Original entry on oeis.org

1, 6, 12, 14, 15, 18, 20, 24, 26, 33, 35, 36, 38, 40, 42, 44, 45, 48, 50, 51, 52, 54, 56, 58, 60, 63, 65, 66, 69, 70, 72, 74, 75, 76, 77, 80, 86, 92, 93, 95, 96, 102, 104, 106, 108, 112, 114, 117, 119, 120, 122, 123, 124, 126, 130, 132, 135, 136, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms and their prime indices begin:
   1: {}
   6: {1,2}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  26: {1,6}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
  38: {1,8}
  40: {1,1,1,3}
  42: {1,2,4}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
		

Crossrefs

A version counting nonempty subsets is A000079 - A051293.
A version counting factorizations is A001055 - A326622.
A version counting compositions is A011782 - A271654.
A version for prime factors is A175352, complement A078175.
A version for distinct prime factors A176587, complement A078174.
The complement is A316413, counted by A067538, strict A102627.
The geometric version is the complement of A326623.
The conjugate version is the complement of A326836.
These partitions are counted by A349156.
A000041 counts partitions.
A001222 counts prime factors with multiplicity.
A018818 counts partitions into divisors, ranked by A326841.
A143773 counts partitions into multiples of the length, ranked by A316428.
A236634 counts unbalanced partitions.
A047993 counts balanced partitions, ranked by A106529.
A056239 adds up prime indices, row sums of A112798.
A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840.
A327472 counts partitions not containing their mean, complement A237984.

Programs

  • Maple
    q:= n-> (l-> nops(l)=0 or irem(add(i, i=l), nops(l))>0)(map
            (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    select(q, [$1..142])[];  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!IntegerQ[Mean[primeMS[#]]]&]

A124943 Table read by rows: number of partitions of n with k as low median.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 2, 0, 0, 1, 6, 3, 1, 0, 0, 1, 8, 4, 2, 0, 0, 0, 1, 11, 6, 3, 1, 0, 0, 0, 1, 15, 8, 4, 2, 0, 0, 0, 0, 1, 20, 12, 5, 3, 1, 0, 0, 0, 0, 1, 26, 16, 7, 4, 2, 0, 0, 0, 0, 0, 1, 35, 22, 10, 5, 3, 1, 0, 0, 0, 0, 0, 1, 45, 29, 14, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 58, 40, 19, 8, 5, 3, 1
Offset: 1

Views

Author

Keywords

Comments

For a multiset with an odd number of elements, the low median is the same as the median. For a multiset with an even number of elements, the low median is the smaller of the two central elements.
Arrange the parts of a partition nonincreasing order. Remove the first part, then the last, then the first remaining part, then the last remaining part, and continue until only a single number, the low median, remains. - Clark Kimberling, May 16 2019

Examples

			For the partition [2,1^2], the sole middle element is 1, so that is the low median. For [3,2,1^2], the two middle elements are 1 and 2; the low median is the smaller, 1.
First 8 rows:
  1
  1   1
  2   0   1
  3   1   0   1
  4   2   0   0   1
  6   3   1   0   0   1
  8   4   2   0   0   0   1
  11  6   3   1   0   0   0   1
From _Gus Wiseman_, Jul 09 2023: (Start)
Row n = 8 counts the following partitions:
  (71)        (62)     (53)   (44)  .  .  .  (8)
  (611)       (521)    (431)
  (5111)      (422)    (332)
  (4211)      (3221)
  (41111)     (2222)
  (3311)      (22211)
  (32111)
  (311111)
  (221111)
  (2111111)
  (11111111)
(End)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A027336, ranks A363488.
The high version of this triangle is A124944.
The rank statistic for this triangle is A363941, high version A363942.
A version for mean instead of median is A363945, rank statistic A363943.
A high version for mean instead of median is A363946, rank stat A363944.
A version for mode instead of median is A363952, high A363953.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A325347 counts partitions with integer median, ranks A359908.
A359893 and A359901 count partitions by median.
A360005(n)/2 returns median of prime indices.

Programs

  • Mathematica
    Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 2)/2]]] &, IntegerPartitions[#]]] &, Range[13]]  (* Peter J. C. Moses, May 14 2019 *)
Previous Showing 11-20 of 95 results. Next