A244370
Total number of toothpicks after n-th stage in the toothpick structure of the symmetric representation of sigma in the four quadrants.
Original entry on oeis.org
8, 24, 48, 80, 112, 160, 200, 264, 328, 408, 464, 560, 624, 728, 832, 960, 1040, 1184, 1272, 1432, 1576, 1728, 1832, 2024, 2160, 2336, 2512, 2736
Offset: 1
Illustration of the structure after 16 stages (Contains 960 toothpicks):
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Cf.
A000203,
A004125,
A024916,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244371,
A244970,
A244971,
A245092.
a(8) corrected and more terms from
Omar E. Pol, Oct 18 2014
A239052
Sum of divisors of 4*n-2.
Original entry on oeis.org
3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1
Illustration of initial terms:
------------------------------------------------------
. Branches of the spiral
. in the second quadrant n a(n)
------------------------------------------------------
.
. _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _| 4 24
. | |
. 12 _| |
. |_ _| _ _ _ _ _ _
. 12 _ _| | _ _ _ _ _| 3 18
. _ _ _| | 9 _| |
. | _ _ _| 9 _|_ _|
. | | _ _| | _ _ _ _
. | | | _ _| 12 _| _ _ _| 2 12
. | | | | _| |
. | | | | | _ _|
. | | | | | | 3 _ _
. | | | | | | | _| 1 3
. |_| |_| |_| |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
Cf.
A000203,
A008438,
A016825,
A062731,
A074400,
A112610,
A193553,
A196020,
A236104,
A235791,
A237270,
A237271,
A237591,
A237593,
A239050,
A239053,
A244050,
A245092,
A262626.
A239053
Sum of divisors of 4*n-1.
Original entry on oeis.org
4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1
Illustration of initial terms:
-----------------------------------------------------
. Branches of the spiral
. in the third quadrant n a(n)
-----------------------------------------------------
. _ _ _ _
. | | | | | | | |
. | | | | | | |_|_ _
. | | | | | | 2 |_ _| 1 4
. | | | | |_|_ 2
. | | | | 4 |_
. | | |_|_ _ |_ _ _ _
. | | 6 |_ |_ _ _ _| 2 8
. |_|_ _ _ |_ 4
. 8 | |_ _ |
. |_ | |_ _ _ _ _ _
. |_ |_ |_ _ _ _ _ _| 3 12
. 8 |_ _| 6
. |
. |_ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _| 4 24
. 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
Cf.
A000203,
A004767,
A008438,
A062731,
A074400,
A112610,
A193553,
A196020,
A235791,
A236104,
A237270,
A237591,
A237593,
A239050,
A239052,
A244050,
A245092,
A262626.
-
[SumOfDivisors(4*n-1): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016
-
A239053:=n->numtheory[sigma](4*n-1): seq(A239053(n), n=1..80); # Wesley Ivan Hurt, Dec 06 2016
-
DivisorSigma[1,4*Range[60]-1] (* Harvey P. Dale, Dec 06 2016 *)
Table[DivisorSigma[1, 4 n - 1], {n, 100}] (* Vincenzo Librandi, Dec 07 2016 *)
-
a(n) = sigma(4*n-1); \\ Michel Marcus, Dec 07 2016
A244971
Number of regions in the symmetric representation of sigma(n) on the four quadrants.
Original entry on oeis.org
1, 1, 4, 1, 4, 1, 4, 1, 8, 4, 4, 1, 4, 4, 8, 1, 4, 1, 4, 1, 12, 4, 4, 1, 8, 4, 12, 1, 4, 1, 4, 1, 12, 4, 8, 1, 4, 4, 12, 1, 4, 1, 4, 4, 8, 4, 4, 1, 8, 8, 12, 4, 4, 1, 12, 1, 12, 4, 4, 1, 4, 4, 16, 1, 12, 1, 4, 4, 12, 8, 4, 1, 4, 4, 12, 4, 8, 4, 4, 1, 16, 4, 4, 1, 12, 4, 12, 1, 4, 1
Offset: 1
From _Omar E. Pol_, Apr 20 2016: (Start)
Illustration of the top view of the stepped pyramid with 16 levels:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593.
(End)
Cf.
A000203,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A244050,
A244370,
A244371,
A244970,
A245092.
-
lista() = {v = readvec("b237271.txt"); for (i=1, #v, vi = v[i]; if (vi == 1, w = 1, w = 4*(vi-1)); print1(w, ", "););} \\ Michel Marcus, Sep 29 2014
A340426
Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
Offset: 1
Triangle begins:
1;
3, 0;
4, 0, 1;
7, 0, 3, 1;
6, 0, 4, 3, 2;
12, 0, 7, 4, 6, 2;
8, 0, 6, 7, 8, 6, 4;
15, 0, 12, 6, 14, 8, 12, 4;
13, 0, 8, 12, 12, 14, 16, 12, 7;
18, 0, 15, 8, 24, 12, 28, 16, 21, 8;
12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 12 = 12
2 0 * 6 = 0
3 1 * 7 = 7
4 1 * 4 = 4
5 2 * 3 = 6
6 2 * 1 = 2
. A000203
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
A215947
Difference between the sum of the even divisors and the sum of the odd divisors of 2n.
Original entry on oeis.org
1, 5, 4, 13, 6, 20, 8, 29, 13, 30, 12, 52, 14, 40, 24, 61, 18, 65, 20, 78, 32, 60, 24, 116, 31, 70, 40, 104, 30, 120, 32, 125, 48, 90, 48, 169, 38, 100, 56, 174, 42, 160, 44, 156, 78, 120, 48, 244, 57, 155, 72, 182, 54, 200, 72, 232, 80, 150, 60, 312, 62, 160
Offset: 1
a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
-
with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1 then printf(`%d, `,s0-s1):else fi:od:
-
a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
Array[a, 62] (* Jean-François Alcover, Sep 13 2018 *)
edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* Harvey P. Dale, Jul 30 2021 *)
-
a(n) = 4*sigma(n) - sigma(2*n); \\ Andrew Howroyd, Jul 28 2018
A239662
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers A017113 interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
4, 12, 20, 4, 28, 0, 36, 12, 44, 0, 4, 52, 20, 0, 60, 0, 0, 68, 28, 12, 76, 0, 0, 4, 84, 36, 0, 0, 92, 0, 20, 0, 100, 44, 0, 0, 108, 0, 0, 12, 116, 52, 28, 0, 4, 124, 0, 0, 0, 0, 132, 60, 0, 0, 0, 140, 0, 36, 20, 0, 148, 68, 0, 0, 0, 156, 0, 0, 0, 12, 164, 76, 44, 0, 0, 4, 172, 0, 0, 28, 0, 0, 180, 84, 0, 0, 0, 0, 188, 0, 52, 0, 0, 0
Offset: 1
Triangle begins:
4;
12;
20, 4;
28, 0;
36, 12;
44, 0, 4;
52, 20, 0;
60, 0, 0;
68, 28, 12;
76, 0, 0, 4;
84, 36, 0, 0;
92, 0, 20, 0;
100, 44, 0, 0;
108, 0, 0, 12;
116, 52, 28, 0, 4;
124, 0, 0, 0, 0;
132, 60, 0, 0, 0;
140, 0, 36, 20, 0;
148, 68, 0, 0, 0;
156, 0, 0, 0, 12;
164, 76, 44, 0, 0, 4;
172, 0, 0, 28, 0, 0;
180, 84, 0, 0, 0, 0;
188, 0, 52, 0, 0, 0;
...
For n = 9, the 9th row of triangle is [68, 28, 12], therefore the alternating row sum is 68 - 28 + 12 = 52. On the other hand we have that 4*A000203(9) = 2*A074400(9) = A239050(9) = 4*13 = 2*26 = 52, equaling the alternating sum of the 9th row of the triangle.
Cf.
A000203,
A000217,
A003056,
A017113,
A074400,
A196020,
A211343,
A235791,
A236104,
A236106,
A236112,
A237048,
A237591,
A239050,
A239446.
A244970
Total number of regions after n-th stage in the diagram of the symmetric representation of sigma on the four quadrants.
Original entry on oeis.org
1, 2, 6, 7, 11, 12, 16, 17, 25, 29, 33, 34, 38, 42, 50, 51, 55, 56, 60, 61, 73, 77, 81, 82, 90, 94, 106, 107, 111, 112, 116, 117, 129, 133, 141, 142, 146, 150, 162, 163, 167, 168, 172, 176, 184, 188, 192, 193, 201, 209, 221, 225, 229, 230, 242, 243, 255, 259, 263, 264
Offset: 1
Illustration of the structure after 15 stages (contains 50 regions):
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _
. _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_
. _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_
. | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ |
. _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _
. | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | |
. | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | |
. | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | |
. | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | |
. | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | |
. | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | |
. | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | |
. | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | |
. | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | |
. | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | |
. | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | |
. | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | |
. | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | |
. |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_|
. | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| |
. |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _|
. |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _|
. |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram is also the top view of the stepped pyramid with 15 levels described in A244050. - _Omar E. Pol_, Apr 20 2016
Cf.
A000203,
A004125,
A024916,
A196020,
A235791,
A236104,
A237270,
A237271,
A237590,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244370,
A244371,
A244971,
A245092.
A246911
Numbers n such that sigma(n+sigma(n)) = 4*sigma(n).
Original entry on oeis.org
28, 66, 348, 496, 840, 920, 1320, 1416, 1602, 1770, 1896, 1920, 2040, 2280, 2556, 3000, 3360, 3720, 4440, 4920, 5456, 5640, 5826, 7080, 7392, 8010, 8040, 8128, 8298, 10528, 10680, 11424, 12768, 12840, 13080, 15108, 15504, 17880, 18120, 18720, 18840, 20832
Offset: 1
Number 28 (with sigma(28) = 56) is in sequence because sigma(26+sigma(26)) = sigma(84) = 224 = 4*56.
-
[n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 4*SumOfDivisors(n)]
-
with(numtheory): A246911:=n->`if`(sigma(n+sigma(n)) = 4*sigma(n),n,NULL): seq(A246911(n), n=1..3*10^4); # Wesley Ivan Hurt, Sep 07 2014
-
for(n=1,10^4,if(sigma(n+sigma(n))==4*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014
A272026
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers A016945 interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
3, 9, 15, 3, 21, 0, 27, 9, 33, 0, 3, 39, 15, 0, 45, 0, 0, 51, 21, 9, 57, 0, 0, 3, 63, 27, 0, 0, 69, 0, 15, 0, 75, 33, 0, 0, 81, 0, 0, 9, 87, 39, 21, 0, 3, 93, 0, 0, 0, 0, 99, 45, 0, 0, 0, 105, 0, 27, 15, 0, 111, 51, 0, 0, 0, 117, 0, 0, 0, 9, 123, 57, 33, 0, 0, 3, 129, 0, 0, 21, 0, 0, 135, 63, 0, 0, 0, 0, 141, 0, 39, 0, 0, 0
Offset: 1
Triangle begins:
3;
9;
15, 3;
21, 0;
27, 9;
33, 0, 3;
39, 15, 0;
45, 0, 0;
51, 21, 9;
57, 0, 0, 3;
63, 27, 0, 0;
69, 0, 15, 0;
75, 33, 0, 0;
81, 0, 0, 9;
87, 39, 21, 0, 3;
93, 0, 0, 0, 0;
99, 45, 0, 0, 0;
105, 0, 27, 15, 0;
111, 51, 0, 0, 0;
117, 0, 0, 0, 9;
123, 57, 33, 0, 0, 3;
129, 0, 0, 21, 0, 0;
135, 63, 0, 0, 0, 0;
141, 0, 39, 0, 0, 0;
...
For n = 9 the divisors of 9 are 1, 3, 9, therefore the sum of the divisors of 9 is 1 + 3 + 9 = 13 and 3*13 = 39. On the other hand the 9th row of triangle is 51, 21, 9, therefore the alternating row sum is 51 - 21 + 9 = 39, equaling 3 times sigma(9).
Cf.
A000203,
A001227,
A003056,
A074400,
A196020,
A236106,
A237048,
A237593,
A239050,
A239662,
A244050,
A272027.
Comments