cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062731 Sum of divisors of 2*n.

Original entry on oeis.org

3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021

Crossrefs

Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.

Programs

Formula

a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)

Extensions

Zero removed and offset corrected by Omar E. Pol, Jul 17 2009

A002513 Number of "cubic partitions" of n: expansion of Product_{k>0} 1/((1-x^(2k))^2*(1-x^(2k-1))) in powers of x.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 23, 31, 54, 73, 118, 159, 246, 329, 489, 651, 940, 1242, 1751, 2298, 3177, 4142, 5630, 7293, 9776, 12584, 16659, 21320, 27922, 35532, 46092, 58342, 75039, 94503, 120615, 151173, 191611, 239060, 301086, 374026, 468342, 579408, 721638, 889287
Offset: 0

Views

Author

Keywords

Comments

For a real polynomial equation of degree n, a(n) is the number of possibilities for the roots to be real and unequal, real and equal (in various combinations), or simple or multiple complex conjugates. For example, a(3)=4 because we can have: three equal roots, two equal roots, three distinct real roots and two complex roots (see the Monthly Problem reference). - Emeric Deutsch, Mar 22 2005
Number of partitions of n, the even parts being of two kinds. E.g. a(4)=9 because we have 4, 4', 3+1, 2+2, 2+2', 2'+2', 2+1+1, 2'+1+1, 1+1+1+1. - Emeric Deutsch, Mar 22 2005
For the name "cubic partition" see Xiong; Chen & Lin; Chern & Dastidar. - Michel Marcus, Jan 28 2016

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 23*x^6 + 31*x^7 + 54*x^8 + 73*x^9 + ...
G.f. = 1/q + q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 23*q^47 + 31*q^55 + 54*q^63 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0930 and N0931).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 50: # to get a(0) to a(N)
    P:= mul((1-x^(2*k))^(-2)*(1-x^(2*k-1))^(-1),k=1..ceil(N/2)):
    S:= series(P, x, N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 26 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, d, 2*d), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 05 2020
  • Mathematica
    max = 50; f[x_] := Product[ 1/((1-x^(2 k))^2*(1-x^(2k-1))), {k, 1, Ceiling[max/2]} ]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 04 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q] / QPochhammer[ q^2], {q, 0, n}];(* Michael Somos, Jul 17 2013 *)
    Table[Sum[PartitionsP[k]*PartitionsP[n-2k],{k,0,n/2}],{n,0,50}] (* Vaclav Kotesovec, Jun 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Nov 10 2005 */
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 2)
    a = EulerTransform(b)
    print([a(n) for n in range(44)]) # Peter Luschny, Nov 17 2022

Formula

From Michael Somos, Mar 23 2003: (Start)
Expansion of q^(1/8) / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 2 sequence [1, 2, ...].
G.f.: Product_{k>0} 1/((1 - x^(2*k))^2 * (1 - x^(2*k-1))).
(End)
Given g.f. A(x), then B(q) = A(q)^8 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 16*v^4 + v^3*w + 256*u*v^3 + 16*u*v^2*w - u^2*w^2. - Michael Somos, Apr 03 2005
a(n) ~ exp(Pi*sqrt(n)) / (8*n^(5/4)) * (1 - (Pi/16 + 15/(8*Pi))/sqrt(n)). - Vaclav Kotesovec, Jun 22 2015, extended Jan 17 2017
From Michel Marcus, Jan 28 2016: (Start)
G.f.: Product_{k>0} 1/((1 - x^k) * (1 - x^(2*k))).
a(3n+2) = 0 (mod 3).
a(25n+22) = 0 (mod 5) (see Xiong).
a(49n+15) = a(49n+29) = a(49n+36) = a(49n+43) = 0 (mod 7) (see Chen & Lin).
a(297n+62) = a(297n+161) = 0 (mod 11) (see Chern & Dastidar).
(End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(-7/2) (t/i)^-1 f(t) where q = exp(2 Pi i t). - Michael Somos, Oct 17 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018
From Peter Bala, Sep 25 2023: (Start)
The g.f. A(x) satisfies log(A(x)) = x + 5*x^2/2 + 4*x^3/3 + 13*x^4/4 + ... = Sum_{n >= 1} A215947(n)*x^n/n.
A(x^2) = 4/(F(x)*F(-x)) = 2/(F(x)*G(-x)), where F(x) = Sum_{n = -oo..oo} x^(n*(n+1)/2) is the g.f. of A089799 and G(x) = Sum_{n = -oo..oo} x^(n^2) is the g.f. of A000122. Cf. A001934. Note that 4/(F(-x)*F(-x)) is the g.f. of A273225.
The self-convolution A(x)^2 is the g.f. of A319455. (End)

Extensions

More terms and information from Michael Somos, Mar 23 2003

A257088 a(2*n) = 4*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1.

Original entry on oeis.org

1, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128
Offset: 0

Views

Author

Michael Somos, Apr 16 2015

Keywords

Examples

			G.f. = 1 + x + 4*x^2 + 3*x^3 + 8*x^4 + 5*x^5 + 12*x^6 + 7*x^7 + 16*x^8 + ...
		

Crossrefs

CF. A257083 (partial sums), A246695.

Programs

  • Haskell
    import Data.List (transpose)
    a257088 n = a257088_list !! n
    a257088_list = concat $ transpose [a008574_list, a005408_list]
    -- Reinhard Zumkeller, Apr 17 2015
  • Mathematica
    a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 2 n];
    a[ n_] := SeriesCoefficient[ (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, n%2, n, 2*n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4) + x * O(x^n), n))};
    

Formula

Euler transform of length 4 sequence [ 1, 3, -1, -1].
a(n) is multiplicative with a(2^e) = 2^(e+1) if e>0, otherwise a(p^e) = p^e.
G.f.: (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
G.f.: (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^2)^3).
MOBIUS transform of A215947 is [1, 4, 3, 8, 5, ...].
a(n) = n * A040001(n) if n>0.
a(n) + a(n-1) = A007310(n) if n>0.
a(n) = A001082(n+1) - A001082(n) if n>0.
Binomial transform with a(0)=0 is A128543 if n>0.
a(2*n) = A008574(n). a(2*n + 1) = A005408(n).
a(n) = A022998(n) if n>0. - R. J. Mathar, Apr 19 2015
From Amiram Eldar, Jan 28 2025: (Start)
Dirichlet g.f.: (1+2^(1-s)) * zeta(s-1).
Sum_{k=1..n} a(k) ~ (3/4) * n^2. (End)
a(n) = gcd(n^n, 2*n). - Mia Boudreau, Jun 27 2025

A215951 Numbers n such that the absolute value of the difference between the sum of the distinct prime divisors of n that are congruent to 1 mod 4 and the sum of the distinct prime divisors of n that are congruent to 3 mod 4 is a prime.

Original entry on oeis.org

15, 30, 35, 45, 60, 70, 75, 90, 105, 120, 135, 140, 143, 150, 175, 180, 210, 225, 240, 245, 255, 270, 273, 280, 285, 286, 300, 315, 323, 350, 357, 360, 375, 385, 405, 420, 435, 450, 455, 465, 480, 490, 510, 525, 540, 546, 560, 561, 570, 572, 600, 609, 615, 630
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2012

Keywords

Examples

			285 is in the sequence because 285 = 3*5*19 and (3+19) - 5 = 17 is prime, where 5 ==1 mod 4 and 3, 19 ==3 mod 4.
		

Crossrefs

Cf. A215947.

Programs

  • Maple
    with(numtheory):for n from 2  to 1000 do:x:=factorset(n):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m],4)=1 then s1:=s1+x[m]:else if irem(x[m],4)=3 then s3:=s3+x[m]:else fi:fi:od:x:=abs(s1-s3):if s1>0 and s1>0 and s3>0 and type (x,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    aQ[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, (t1 = Total[Select[p, Mod[#, 4] == 1 &]]) > 0 && (t2 = Total[Select[p, Mod[#, 4] == 3 &]]) > 0 && PrimeQ@Abs[t1 - t2]]; Select[Range[630], aQ] (* Amiram Eldar, Sep 09 2019 *)

A216157 Difference between the sum of the even divisors and the sum of the odd divisors of phi(n).

Original entry on oeis.org

1, 1, 5, 1, 4, 5, 4, 5, 6, 5, 20, 4, 13, 13, 29, 4, 13, 13, 20, 6, 12, 13, 30, 20, 13, 20, 40, 13, 24, 29, 30, 29, 52, 20, 65, 13, 52, 29, 78, 20, 32, 30, 52, 12, 24, 29, 32, 30, 61, 52, 70, 13, 78, 52, 65, 40, 30, 29, 120, 24, 65, 61, 116, 30, 48, 61, 60, 52
Offset: 3

Views

Author

Michel Lagneau, Sep 02 2012

Keywords

Comments

phi(n) : A000010 is the Euler totient function, and even for n > 2.
If n prime, phi(n) = n-1 and a(n) = a((n-1)/2).

Examples

			a(13) = 20 because the divisors of phi(13) = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 3 to 100 do:x:=divisors(phi(n)):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1  then printf(`%d, `,s0-s1):else fi:od:
  • Mathematica
    Table[Total[Select[Divisors[EulerPhi[n]], EvenQ[#]&]]-Total[Select[Divisors[EulerPhi[n]], OddQ[#]&]], {n,3,80}]
Showing 1-5 of 5 results.