cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A351949 Lexicographically earliest infinite sequence such that a(i) = a(j) => A246277(A329044(i)) = A246277(A329044(j)) and A003557(i) = A003557(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 8, 9, 2, 10, 2, 7, 8, 4, 2, 11, 12, 4, 13, 7, 2, 14, 2, 15, 8, 4, 16, 17, 2, 4, 8, 5, 2, 18, 2, 7, 19, 4, 2, 20, 21, 22, 8, 7, 2, 23, 24, 25, 8, 4, 2, 26, 2, 4, 27, 28, 29, 30, 2, 7, 8, 31, 2, 32, 2, 4, 33, 7, 34, 30, 2, 9, 35, 4, 2, 36, 37, 4, 8, 25, 2, 38, 39, 7, 8, 4, 40
Offset: 1

Views

Author

Antti Karttunen, Apr 05 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A003557(n), A329345(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A329044(n) = A064989(A324886(n));
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    v351949 = rgs_transform(vector(up_to, n, [A003557(n), A246277(A329044(n))]));
    A351949(n) = v351949[n];

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A064989 Multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 17, 3, 10, 7, 19, 2, 9, 11, 8, 5, 23, 6, 29, 1, 14, 13, 15, 4, 31, 17, 22, 3, 37, 10, 41, 7, 12, 19, 43, 2, 25, 9, 26, 11, 47, 8, 21, 5, 34, 23, 53, 6, 59, 29, 20, 1, 33, 14, 61, 13, 38, 15, 67, 4, 71, 31, 18, 17, 35, 22, 73, 3, 16
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

From Antti Karttunen, May 12 2014: (Start)
a(A003961(n)) = n for all n. [This is a left inverse function for the injection A003961.]
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014

Examples

			a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
		

Crossrefs

Cf. A064216 (odd bisection), A003961 (inverse), A151799.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
Similar prime-shifts towards smaller numbers: A252461, A252462, A252463.

Programs

  • Haskell
    a064989 1 = 1
    a064989 n = product $ map (a008578 . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
    ;; Antti Karttunen, May 12 2014
    (definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
    (definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
    
  • Maple
    q:= proc(p) prevprime(p) end proc: q(2):= 1:
    [seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
  • Mathematica
    Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i,1]) % 2, f[i,1] = precprime(p-1), f[i,1] = 1);); factorback(f);} \\ Michel Marcus, Dec 18 2014
    
  • PARI
    A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1),1),t[2]],Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
    
  • Python
    from math import prod
    from sympy import prevprime, factorint
    def A064989(n): return prod(prevprime(p)**e for p, e in  factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023

Formula

From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A242424(n) / A105560(n).
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(1) = 1; for n > 1, a(2n) = a(n), a(2n+1) = A163511((A243071(2n+1)-1) / 2).
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022

A055396 Smallest prime dividing n is a(n)-th prime (a(1)=0).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 2, 1, 4, 1, 22, 1, 2, 1, 23, 1, 3, 1, 2, 1, 24, 1, 4, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Henry Bottomley, May 15 2000

Keywords

Comments

Grundy numbers of the game in which you decrease n by a number prime to n, and the game ends when 1 is reached. - Eric M. Schmidt, Jul 21 2013
a(n) = the smallest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(21) = 2; indeed, the partition having Heinz number 21 = 3*7 is [2,4]. - Emeric Deutsch, Jun 04 2015
a(n) is the number of numbers whose largest proper divisor is n, i.e., for n>1, number of occurrences of n in A032742. - Stanislav Sykora, Nov 04 2016
For n > 1, a(n) gives the number of row where n occurs in arrays A083221 and A246278. - Antti Karttunen, Mar 07 2017

Examples

			a(15) = 2 because 15=3*5, 3<5 and 3 is the 2nd prime.
		

References

  • John H. Conway, On Numbers and Games, 2nd Edition, p. 129.

Crossrefs

Programs

  • Haskell
    a055396 = a049084 . a020639  -- Reinhard Zumkeller, Apr 05 2012
    
  • Maple
    with(numtheory):
    a:= n-> `if`(n=1, 0, pi(min(factorset(n)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[1] = 0; a[n_] := PrimePi[ FactorInteger[n][[1, 1]] ]; Table[a[n], {n, 1, 96}](* Jean-François Alcover, Jun 11 2012 *)
  • PARI
    a(n)=if(n==1,0,primepi(factor(n)[1,1])) \\ Charles R Greathouse IV, Apr 23 2015
    
  • Python
    from sympy import primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a(n): return 0 if n==1 else a049084(min(primefactors(n))) # Indranil Ghosh, May 05 2017

Formula

From Reinhard Zumkeller, May 22 2003: (Start)
a(n) = A049084(A020639(n)).
A000040(a(n)) = A020639(n); a(n) <= A061395(n).
(End)
From Antti Karttunen, Mar 07 2017: (Start)
A243055(n) = A061395(n) - a(n).
a(A276086(n)) = A257993(n).
(End)

A032742 a(1) = 1; for n > 1, a(n) = largest proper divisor of n (that is, for n>1, maximum divisor d of n in range 1 <= d < n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

It seems that a(n) = Max_{j=n+1..2n-1} gcd(n,j). - Labos Elemer, May 22 2002
This is correct: No integer in the range [n+1, 2n-1] has n as its divisor, but certainly at least one multiple of the largest proper divisor of n will occur there (e.g., if it is n/2, then at n + (n/2)). - Antti Karttunen, Dec 18 2014
The slopes of the visible lines made by the points in the scatter plot are 1/2, 1/3, 1/5, 1/7, ... (reciprocals of primes). - Moosa Nasir, Jun 19 2022

Crossrefs

Maximal GCD of k positive integers with sum n for k = 2..10: this sequence (k=2,n>=2), A355249 (k=3), A355319 (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).

Programs

  • Haskell
    a032742 n = n `div` a020639 n  -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011
    1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
  • Mathematica
    f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
    Join[{1},Divisors[#][[-2]]&/@Range[2,80]] (* Harvey P. Dale, Nov 29 2011 *)
    a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
    Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
  • PARI
    a(n)=if(n==1,1,n/factor(n)[1,1]) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else n//min(factorint(n))
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 21 2022
  • Scheme
    (define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
    

Formula

a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = A130064(n) / A006530(n). - Reinhard Zumkeller, May 05 2007
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
For all n >= 1, A276085(a(A276086(n))) = A276151(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Sum_{k>=1} A005867(k-1)/(prime(k)*A002110(k)) = 0.165049... . - Amiram Eldar, Nov 19 2022

Extensions

Definition clarified by N. J. A. Sloane, Dec 26 2022

A078898 Number of times the smallest prime factor of n is the smallest prime factor for numbers <= n; a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 4, 11, 1, 12, 2, 13, 5, 14, 1, 15, 1, 16, 6, 17, 3, 18, 1, 19, 7, 20, 1, 21, 1, 22, 8, 23, 1, 24, 2, 25, 9, 26, 1, 27, 4, 28, 10, 29, 1, 30, 1, 31, 11, 32, 5, 33, 1, 34, 12, 35, 1, 36, 1, 37, 13, 38, 3, 39, 1, 40, 14, 41, 1, 42, 6, 43
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

From Antti Karttunen, Dec 06 2014: (Start)
For n >= 2, a(n) tells in which column of the sieve of Eratosthenes (see A083140, A083221) n occurs in. A055396 gives the corresponding row index.
(End)

Crossrefs

Programs

  • Haskell
    import Data.IntMap (empty, findWithDefault, insert)
    a078898 n = a078898_list !! n
    a078898_list = 0 : 1 : f empty 2 where
       f m x = y : f (insert p y m) (x + 1) where
               y = findWithDefault 0 p m + 1
               p = a020639 x
    -- Reinhard Zumkeller, Apr 06 2015
  • Maple
    N:= 1000: # to get a(0) to a(N)
    Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]):
    A:= Vector(N):
    for p in Primes do
      t:= 1:
      A[p]:= 1:
      for n from p^2 to N by p do
        if A[n] = 0 then
           t:= t+1:
           A[n]:= t
        fi
      od
    od:
    0,1,seq(A[i],i=2..N); # Robert Israel, Jan 04 2015
  • Mathematica
    Module[{nn=90,spfs},spfs=Table[FactorInteger[n][[1,1]],{n,nn}];Table[ Count[ Take[spfs,i],spfs[[i]]],{i,nn}]] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    \\ Not practical for computing, but demonstrates the sum moebius formula:
    A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
    A055396(n) = { if(1==n,0,primepi(A020639(n))); };
    A002110(n) = prod(i=1, n, prime(i));
    A078898(n) = { my(k,p); if(1==n, n, k = A002110(A055396(n)-1); p = A020639(n); sumdiv(k, d, moebius(d)*(n\(p*d)))); };
    \\ Antti Karttunen, Dec 05 2014
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A078898 n) (if (< n 2) n (+ 1 (A078898 (A249744 n)))))
    ;; Much better for computing. Needs also code from A249738 and A249744. - Antti Karttunen, Dec 06 2014
    

Formula

Ordinal transform of A020639 (Lpf). - Franklin T. Adams-Watters, Aug 28 2006
From Antti Karttunen, Dec 05-08 2014: (Start)
a(0) = 0, a(1) = 1, a(n) = 1 + a(A249744(n)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(n / (A020639(n)*d)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(A032742(n) / d).
[Instead of Moebius mu (A008683) one could use Liouville's lambda (A008836) in the above formulas, because all primorials (A002110) are squarefree. A020639(n) gives the smallest prime dividing n, and A055396 gives its index].
a(0) = 0, a(1) = 1, a(2n) = n, a(2n+1) = a(A250470(2n+1)). [After a similar recursive formula for A246277. However, this cannot be used for computing the sequence, unless a definition for A250470(n) is found which doesn't require computing the value of A078898(n).]
For n > 1: a(n) = A249810(n) - A249820(n).
(End)
Other identities:
a(2*n) = n.
For n > 1: a(n)=1 if and only if n is prime.
For n > 1: a(n) = A249808(n, A055396(n)) = A249809(n, A055396(n)).
For n > 1: a(n) = A246277(A249818(n)).
From Antti Karttunen, Jan 04 2015: (Start)
a(n) = 2 if and only if n is a square of a prime.
For all n >= 1: a(A251728(n)) = A243055(A251728(n)) + 2. That is, if n is a semiprime of the form prime(i)*prime(j), prime(i) <= prime(j) < prime(i)^2, then a(n) = (j-i)+2.
(End)
a(A000040(n)^2) = 2; a(A000040(n)*A000040(n+1)) = 3. - Reinhard Zumkeller, Apr 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Sum_{k>=1} (A038110(k)/A038111(k))^2 = 0.2847976823663... . - Amiram Eldar, Oct 26 2024

Extensions

a(0) = 0 prepended for recurrence's sake by Antti Karttunen, Dec 06 2014

A323243 a(1) = 0; for n > 1, a(n) = A000203(A156552(n)).

Original entry on oeis.org

0, 1, 3, 4, 7, 6, 15, 8, 12, 13, 31, 12, 63, 18, 18, 24, 127, 14, 255, 20, 39, 48, 511, 24, 28, 84, 24, 48, 1023, 32, 2047, 32, 54, 176, 42, 40, 4095, 258, 144, 56, 8191, 38, 16383, 68, 36, 800, 32767, 48, 60, 31, 252, 132, 65535, 30, 91, 72, 528, 1302, 131071, 44, 262143, 2736, 60, 104, 126, 96, 524287, 304, 774, 42, 1048575, 72, 2097151, 4356, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2019

Keywords

Crossrefs

Cf. A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.

Programs

  • Mathematica
    Array[If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 75] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A323243(n) = if(1==n, 0, sigma(A156552(n)));
    
  • PARI
    \\ For computing terms a(n), with n > ~4000 use Hans Havermann's factorization file https://oeis.org/A156552/a156552.txt
    v156552sigs = readvec("a156552.txt"); \\ First read it in as a PARI-vector.
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1))); \\ Then play sigma
    \\ Antti Karttunen, Mar 15 2019
    
  • Python
    from sympy import divisor_sigma, primepi, factorint
    def A323243(n): return divisor_sigma(sum((1< 1 else 0 # Chai Wah Wu, Mar 10 2023

Formula

a(1) = 0; for n > 1, a(n) = A000203(A156552(n)).
a(n) = 2*A156552(n) - A323244(n).
a(n) = A323247(n) - A323248(n).
From Antti Karttunen, Mar 12 2019: (Start)
a(A000040(n)) = A000225(n).
a(n) = Sum_{d|n} A324543(d).
For n > 1, a(2*A246277(n)) = A324118(n).
gcd(a(n), A156552(n)) = A324396(n).
A000035(a(n)) = A324823(n).
(End)

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A252463 Hybrid shift: a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1); shift the even numbers one bit right, shift the prime factorization of odd numbers one step towards smaller primes.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 4, 4, 5, 7, 6, 11, 7, 6, 8, 13, 9, 17, 10, 10, 11, 19, 12, 9, 13, 8, 14, 23, 15, 29, 16, 14, 17, 15, 18, 31, 19, 22, 20, 37, 21, 41, 22, 12, 23, 43, 24, 25, 25, 26, 26, 47, 27, 21, 28, 34, 29, 53, 30, 59, 31, 20, 32, 33, 33, 61, 34, 38, 35, 67, 36, 71, 37, 18, 38, 35, 39, 73, 40, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

For any node n >= 2 in binary trees A005940 and A163511, a(n) gives the parent node of n. (Here we assume that their initial root 1 is its own parent).

Crossrefs

A252464 gives the number of iterations needed to reach 1 from n.
Bisections: A000027 and A064216.

Programs

  • Mathematica
    Table[Which[n == 1, 1, EvenQ@ n, n/2, True, Times @@ Power[
    Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n], {n, 81}] (* Michael De Vlieger, Sep 16 2017 *)
  • PARI
    a064989(n) = factorback(Mat(apply(t->[max(precprime(t[1]-1), 1), t[2]], Vec(factor(n)~))~)); \\ A064989
    a(n) = if (n==1, 1, if (n%2, a064989(n), n/2)); \\ Michel Marcus, Oct 13 2021
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a064989(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Sep 15 2017
    
  • Scheme
    (define (A252463 n) (cond ((<= n 1) n) ((even? n) (/ n 2)) (else (A064989 n))))
    

Formula

a(1) = 1, a(2n) = n, a(2n+1) = A064989(2n+1).
Other identities. For all n >= 1:
a(2n-1) = A064216(n).
A001222(a(n)) = A001222(n) - (1 - A000035(n)).
Above means: if n is odd, A001222(a(n)) = A001222(n) and if n is even, A001222(a(n)) = A001222(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/8 + (1/2) * Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.2905279467..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023
Previous Showing 31-40 of 86 results. Next