A122832
Exponential Riordan array (e^(x(1+x)),x).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 25, 28, 18, 4, 1, 81, 125, 70, 30, 5, 1, 331, 486, 375, 140, 45, 6, 1, 1303, 2317, 1701, 875, 245, 63, 7, 1, 5937, 10424, 9268, 4536, 1750, 392, 84, 8, 1, 26785, 53433, 46908, 27804, 10206, 3150, 588, 108, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
7, 9, 3, 1;
25, 28, 18, 4, 1;
81, 125, 70, 30, 5, 1;
...
From _Peter Bala_, May 14 2012: (Start)
T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are:
{1}[2,3], {1}[3,2], {1}[2][3],
{2}[1,3], {2}[3,1], {2}[1][3],
{3}[1,2], {3}[2,1], {3}[1][2]. (End)
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ Michel Marcus, Aug 28 2017
A147746
Riordan array (1, x(1-2x)/(1-3x+x^2)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 13, 14, 9, 4, 1, 0, 34, 40, 28, 14, 5, 1, 0, 89, 114, 87, 48, 20, 6, 1, 0, 233, 323, 267, 161, 75, 27, 7, 1, 0, 610, 910, 809, 528, 270, 110, 35, 8, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 13, 14, 9, 4, 1;
0, 34, 40, 28, 14, 5, 1;
0, 89, 114, 87, 48, 20, 6, 1;
...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, # (1-2#)/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A154602
Exponential Riordan array [exp(sinh(x)*exp(x)), sinh(x)*exp(x)].
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 49, 104, 70, 16, 1, 257, 641, 550, 190, 25, 1, 1539, 4380, 4531, 2080, 425, 36, 1, 10299, 32803, 39515, 22491, 6265, 833, 49, 1, 75905, 266768, 365324, 247072, 87206, 16016, 1484, 64, 1, 609441, 2337505, 3575820, 2792476, 1192086, 281190, 36204, 2460, 81, 1
Offset: 0
Triangle begins
1;
1, 1;
3, 4, 1;
11, 19, 9, 1;
49, 104, 70, 16, 1;
257, 641, 550, 190, 25, 1;
1539, 4380, 4531, 2080, 425, 36, 1;
Production matrix of this array is
1, 1,
2, 3, 1,
0, 4, 5, 1,
0, 0, 6, 7, 1,
0, 0, 0, 8, 9, 1,
0, 0, 0, 0, 10, 11, 1
with generating function exp(t*x)*(1+t)*(1+2*x).
-
A154602:= func< n,k | (&+[2^(n-j)*Binomial(j,k)*StirlingSecond(n,j): j in [k..n]]) >;
[A154602(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 19 2024
-
A154602 := (n, k) -> add(2^(n-j) * binomial(j, k) * Stirling2(n, j), j = k..n): for n from 0 to 6 do seq(A154602(n, k), k = 0..n) od; # Peter Luschny, Dec 13 2022
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[Sinh[#] Exp[#]]&, Sinh[#] Exp[#]&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
def A154602(n,k): return sum(2^(n-j)*binomial(j,k)* stirling_number2(n,j) for j in range(k,n+1))
flatten([[A154602(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 19 2024
A106509
Riordan array ((1+x)/(1+x+x^2), x/(1+x)), read by rows.
Original entry on oeis.org
1, 0, 1, -1, -1, 1, 1, 0, -2, 1, 0, 1, 2, -3, 1, -1, -1, -1, 5, -4, 1, 1, 0, 0, -6, 9, -5, 1, 0, 1, 0, 6, -15, 14, -6, 1, -1, -1, 1, -6, 21, -29, 20, -7, 1, 1, 0, -2, 7, -27, 50, -49, 27, -8, 1, 0, 1, 2, -9, 34, -77, 99, -76, 35, -9, 1, -1, -1, -1, 11, -43, 111, -176, 175, -111, 44, -10, 1
Offset: 0
Triangle begins:
1;
0, 1;
-1, -1, 1;
1, 0, -2, 1;
0, 1, 2, -3, 1;
-1, -1, -1, 5, -4, 1;
-
T:= func< n,k | (&+[ (-1)^j*Binomial(2*n-k-j, j): j in [0..n-k]]) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1 + #)/(1 + # + #^2)&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
def T(n,k): return sum( (-1)^j*binomial(2*n-k-j, j) for j in (0..n-k))
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
A112519
Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 4, 0, 1, 0, 12, 2, 6, 0, 1, 0, 14, 28, 3, 8, 0, 1, 0, 100, 32, 48, 4, 10, 0, 1, 0, 180, 249, 54, 72, 5, 12, 0, 1, 0, 990, 440, 455, 80, 100, 6, 14, 0, 1, 0, 2310, 2552, 792, 726, 110, 132, 7, 16, 0, 1, 0, 10920, 5876, 4836, 1248, 1070, 144, 168, 8, 18, 0, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 0, 1;
0, 2, 0, 1;
0, 1, 4, 0, 1;
0, 12, 2, 6, 0, 1;
0, 14, 28, 3, 8, 0, 1;
0, 100, 32, 48, 4, 10, 0, 1;
0, 180, 249, 54, 72, 5, 12, 0, 1;
0, 990, 440, 455, 80, 100, 6, 14, 0, 1;
-
A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;
[A112519(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
-
(* First program *)
c[x_]:= (1 - Sqrt[1-4x])/(2x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
(* Second program *)
T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
-
@CachedFunction
def A112519(n,k):
if (k==n): return 1
else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )
flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022
A113278
Triangle T, read by rows, such that the matrix square, T^2, forms a simple 2-diagonal triangle where [T^2](n,n) = 1 and [T^2](n+1,n) = 2*(n+1) for n>=0.
Original entry on oeis.org
1, 1, 1, -1, 2, 1, 3, -3, 3, 1, -15, 12, -6, 4, 1, 105, -75, 30, -10, 5, 1, -945, 630, -225, 60, -15, 6, 1, 10395, -6615, 2205, -525, 105, -21, 7, 1, -135135, 83160, -26460, 5880, -1050, 168, -28, 8, 1, 2027025, -1216215, 374220, -79380, 13230, -1890, 252, -36, 9, 1
Offset: 0
Triangle begins:
1;
1,1;
-1,2,1;
3,-3,3,1;
-15,12,-6,4,1;
105,-75,30,-10,5,1;
-945,630,-225,60,-15,6,1;
10395,-6615,2205,-525,105,-21,7,1;
...
where T(n,k) = (-1)^(n-1-k)*A001147(n-1)*C(n,k).
The matrix square equals:
1;
2,1;
0,4,1;
0,0,6,1;
0,0,0,8,1;
0,0,0,0,10,1;
0,0,0,0,0,12,1;
...
The matrix log, L, begins:
0;
1,0;
-2,2,0;
8,-6,3,0;
-48,32,-12,4,0;
384,-240,80,-20,5,0;
-3840,2304,-720,160,-30,6,0;
...
where L(n,k) = (-1)^(n-1-k)*A000165(n-1)*C(n,k).
Cf.
A001147 (odd double factorials),
A000165 (even double factorials).
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Sqrt[1 + 2 #]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r==c,1,if(r==c+1,2*c)))); (sum(i=0,n+1,(sum(j=1,n+1,-(M^0-M)^j/j)/2)^i/i!))[n+1,k+1]}
A114189
Riordan array (1/(1+xc(-2x)), xc(-2x)/(1+xc(-2x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -13, 19, -7, 1, 67, -102, 44, -10, 1, -381, 593, -278, 78, -13, 1, 2307, -3640, 1795, -568, 121, -16, 1, -14589, 23231, -11849, 4051, -999, 173, -19, 1, 95235, -152650, 79750, -28770, 7820, -1598, 234, -22, 1, -636925, 1025965, -545680, 204760, -59650, 13642, -2392, 304, -25, 1
Offset: 0
Triangle begins
1;
-1, 1;
3, -4, 1;
-13, 19, -7, 1;
67, -102, 44, -10, 1;
-381, 593, -278, 78, -13, 1;
-
c[x_] := (1 - Sqrt[1 - 4x])/(2x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 + # c[-2#])&, # c[-2#]/(1 + # c[-2#])&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A114193
Riordan array (1/(1+2xc(-2x)),xc(-2x)/(1+2xc(-2x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, -2, 1, 8, -6, 1, -40, 36, -10, 1, 224, -224, 80, -14, 1, -1344, 1440, -600, 140, -18, 1, 8448, -9504, 4400, -1232, 216, -22, 1, -54912, 64064, -32032, 10192, -2184, 308, -26, 1, 366080, -439296, 232960, -81536, 20160, -3520, 416, -30, 1, -2489344, 3055104, -1697280, 639744, -176256, 35904, -5304, 540, -34, 1
Offset: 0
Triangle begins
1;
-2, 1;
8, -6, 1;
-40, 36, -10, 1;
224, -224, 80, -14, 1;
-1344, 1440, -600, 140, -18, 1;
-
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 + 2 # c[-2 #])&, # c[-2 #]/(1 + 2 # c[-2 #])&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A116071
Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
+ (10 + 9*y + 3*y^2 + y^3)*x^3/3!
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
+ (10 + 9*y + 3*y^2 + y^3)*x^3
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
1;
1, 1;
3, 2, 1;
10, 9, 3, 1;
41, 40, 18, 4, 1;
196, 205, 100, 30, 5, 1;
1057, 1176, 615, 200, 45, 6, 1;
6322, 7399, 4116, 1435, 350, 63, 7, 1;
41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
/* By definition C^C: */
{T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From e.g.f.: */
{T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From row polynomials (Paul D. Hanna, Aug 03 2014): */
{T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */
{T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A136216
Triangle T, read by rows, where T(n,k) = A008544(n-k)*C(n,k) where A008544 equals the triple factorials in column 0.
Original entry on oeis.org
1, 2, 1, 10, 4, 1, 80, 30, 6, 1, 880, 320, 60, 8, 1, 12320, 4400, 800, 100, 10, 1, 209440, 73920, 13200, 1600, 150, 12, 1, 4188800, 1466080, 258720, 30800, 2800, 210, 14, 1, 96342400, 33510400, 5864320, 689920, 61600, 4480, 280, 16, 1
Offset: 0
Triangle begins:
1;
2, 1;
10, 4, 1;
80, 30, 6, 1;
880, 320, 60, 8, 1;
12320, 4400, 800, 100, 10, 1;
209440, 73920, 13200, 1600, 150, 12, 1;
4188800, 1466080, 258720, 30800, 2800, 210, 14, 1; ...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 - 3 #)^(2/3)&, #&, 9, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
{T(n,k) = binomial(n,k)*if(n-k==0,1, prod(j=0,n-k-1,3*j+2))}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Comments