cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A336128 Number of ways to split a strict composition of n into contiguous subsequences with different sums.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 29, 37, 57, 89, 265, 309, 521, 745, 1129, 3005, 3545, 5685, 8201, 12265, 16629, 41369, 48109, 77265, 107645, 160681, 214861, 316913, 644837, 798861, 1207445, 1694269, 2437689, 3326705, 4710397, 6270513, 12246521, 14853625, 22244569, 30308033, 43706705, 57926577, 82166105, 107873221, 148081785, 257989961, 320873065, 458994657, 628016225, 875485585, 1165065733
Offset: 0

Views

Author

Gus Wiseman, Jul 10 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(5) = 5 splits:
  ()  (1)  (2)  (3)     (4)     (5)
                (12)    (13)    (14)
                (21)    (31)    (23)
                (1)(2)  (1)(3)  (32)
                (2)(1)  (3)(1)  (41)
                                (1)(4)
                                (2)(3)
                                (3)(2)
                                (4)(1)
The a(6) = 29 splits:
  (6)    (1)(5)   (1)(2)(3)
  (15)   (2)(4)   (1)(3)(2)
  (24)   (4)(2)   (2)(1)(3)
  (42)   (5)(1)   (2)(3)(1)
  (51)   (1)(23)  (3)(1)(2)
  (123)  (1)(32)  (3)(2)(1)
  (132)  (13)(2)
  (213)  (2)(13)
  (231)  (2)(31)
  (312)  (23)(1)
  (321)  (31)(2)
         (32)(1)
		

Crossrefs

The version with equal instead of different sums is A336130.
Starting with a non-strict composition gives A336127.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Set partitions with distinct block-sums are A275780.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]

Extensions

a(31)-a(50) from Max Alekseyev, Feb 14 2024

A300301 Number of ways to choose a partition, with odd parts, of each part of a partition of n into odd parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 37, 56, 80, 127, 183, 280, 428, 616, 893, 1367, 1944, 2846, 4223, 6049, 8691, 12670, 18128, 25921, 37529, 53338, 75738, 108561, 153460, 216762, 308829, 433893, 612006, 864990, 1211097, 1697020, 2386016, 3331037, 4648229, 6503314
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 10 twice-partitions using odd partitions: (5)(1), (3)(3), (113)(1), (3)(111), (111)(3), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-2)+`if`(i>n, 0, b(i)*g(n-i, i)))
        end:
    a:= n-> g(n, n-1+irem(n,2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 05 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-PartitionsQ[n]x^n),{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_{n odd} 1/(1 - A000009(n)x^n).

A358830 Number of twice-partitions of n into partitions with all different lengths.

Original entry on oeis.org

1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (11)(2)   (2111)
                      (2)(11)   (11111)
                      (21)(1)   (21)(2)
                      (111)(1)  (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of lengths we have A271619.
For constant instead of distinct lengths we have A306319.
The case of distinct sums also is A358832.
The version for multiset partitions of integer partitions is A358836.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A336130 Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 13 splits:
  (1)  (2)  (3)    (4)    (5)    (6)        (7)
            (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)      (2,5)
                          (3,2)  (4,2)      (3,4)
                          (4,1)  (5,1)      (4,3)
                                 (1,2,3)    (5,2)
                                 (1,3,2)    (6,1)
                                 (2,1,3)    (1,2,4)
                                 (2,3,1)    (1,4,2)
                                 (3,1,2)    (2,1,4)
                                 (3,2,1)    (2,4,1)
                                 (1,2),(3)  (4,1,2)
                                 (2,1),(3)  (4,2,1)
                                 (3),(1,2)
                                 (3),(2,1)
		

Crossrefs

The version with different instead of equal sums is A336128.
Starting with a non-strict composition gives A074854.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Set partitions with equal block-sums are A035470.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]

Extensions

a(31)-a(60) from Max Alekseyev, Feb 14 2024

A358831 Number of twice-partitions of n into partitions with weakly decreasing lengths.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(4) = 14 twice-partitions:
  (1)  (2)     (3)        (4)
       (11)    (21)       (22)
       (1)(1)  (111)      (31)
               (2)(1)     (211)
               (11)(1)    (1111)
               (1)(1)(1)  (2)(2)
                          (3)(1)
                          (11)(2)
                          (21)(1)
                          (11)(11)
                          (111)(1)
                          (2)(1)(1)
                          (11)(1)(1)
                          (1)(1)(1)(1)
		

Crossrefs

This is the semi-ordered case of A141199.
For constant instead of weakly decreasing lengths we have A306319.
For distinct instead of weakly decreasing lengths we have A358830.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A196545 counts p-trees, enriched A289501.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(jAndrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A279374 Number of ways to choose an odd partition of each part of an odd partition of 2n+1.

Original entry on oeis.org

1, 3, 6, 15, 37, 80, 183, 428, 893, 1944, 4223, 8691, 18128, 37529, 75738, 153460, 308829, 612006, 1211097, 2386016, 4648229, 9042678, 17528035, 33645928, 64508161, 123178953, 233709589, 442583046, 834923483, 1567271495, 2935406996, 5481361193, 10191781534
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2016

Keywords

Comments

An odd partition is an integer partition of an odd number with an odd number of parts, all of which are odd.

Examples

			The a(3)=15 ways to choose an odd partition of each part of an odd partition of 7 are:
((7)), ((511)), ((331)), ((31111)), ((1111111)), ((5)(1)(1)), ((311)(1)(1)),
((11111)(1)(1)), ((3)(3)(1)), ((3)(111)(1)), ((111)(3)(1)), ((111)(111)(1)),
((3)(1)(1)(1)(1)), ((111)(1)(1)(1)(1)), ((1)(1)(1)(1)(1)(1)(1)).
		

Crossrefs

Cf. A000009 (strict partitions), A078408 (odd partitions), A063834, A271619, A279375.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          [0, 2, 0, 1$4, 2, 0, 2, 1$4, 0, 2][1+irem(d, 16)],
          d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i, t) option remember;
          `if`(n=0, t, `if`(i<1, 0, b(n, i-2, t)+
          `if`(i>n, 0, b(n-i, i, 1-t)*g((i-1)/2))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 12 2016
  • Mathematica
    nn=20;Table[SeriesCoefficient[Product[1/(1-PartitionsQ[k]x^k),{k,1,2n-1,2}],{x,0,2n-1}],{n,nn}]

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021

A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
          `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.

A358908 Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.

Original entry on oeis.org

1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((11)(1))  ((1)(3))
                            ((3)(1))
                            ((11)(2))
                            ((21)(1))
                            ((111)(1))
		

Crossrefs

This is the distinct case of A055887 with weakly decreasing lengths.
This is the distinct case is A141199.
The case of distinct lengths also is A358836.
This is the case of A358906 with weakly decreasing lengths.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n)))  ))} \\ Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A296118 Number of ways to choose a factorization of each factor in a strict factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 18, 3, 3, 3, 23, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 45, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 34, 3, 12, 1, 8, 3, 12, 1, 66, 1, 3, 8, 8, 3, 12, 1, 45, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(12) = 8 twice-factorizations are (2)*(2*3), (2)*(6), (3)*(2*2), (3)*(4), (2*2*3), (2*6), (3*4), (12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Times@@(Length[facs[#]]&/@f),{f,Select[facs[n],UnsameQ@@#&]}],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A001055(n/d, d))));
    A296118(n, m=n) = ((n<=m)*A001055(n) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA001055(d)*A296118(n/d, d-1)))); \\ Antti Karttunen, Oct 08 2018

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A001055(n)/n^s).
Previous Showing 11-20 of 56 results. Next