cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A358824 Number of twice-partitions of n of odd length.

Original entry on oeis.org

0, 1, 2, 4, 7, 15, 32, 61, 121, 260, 498, 967, 1890, 3603, 6839, 12972, 23883, 44636, 82705, 150904, 275635, 501737, 905498, 1628293, 2922580, 5224991, 9296414, 16482995, 29125140, 51287098, 90171414, 157704275, 275419984, 479683837, 833154673, 1442550486, 2493570655
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)        (4)         (5)
       (11)  (21)       (22)        (32)
             (111)      (31)        (41)
             (1)(1)(1)  (211)       (221)
                        (1111)      (311)
                        (2)(1)(1)   (2111)
                        (11)(1)(1)  (11111)
                                    (2)(2)(1)
                                    (3)(1)(1)
                                    (11)(2)(1)
                                    (2)(11)(1)
                                    (21)(1)(1)
                                    (11)(11)(1)
                                    (111)(1)(1)
                                    (1)(1)(1)(1)(1)
		

Crossrefs

The version for set partitions is A024429.
For odd lengths (instead of length) we have A358334.
The case of odd parts also is A358823.
The case of odd sums also is A358826.
The case of odd lengths also is A358834.
For multiset partitions of integer partitions: A358837, ranked by A026424.
A000009 counts partitions into odd parts.
A027193 counts partitions of odd length.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A078408 counts odd-length partitions into odd parts.
A300301 aerated counts twice-partitions with odd sums and parts.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Length[#]]&]],{n,0,10}]
  • PARI
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=vector(n,k,numbpart(k))); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: ((1/Product_{k>=1} (1-A000041(k)*x^k)) - (1/Product_{k>=1} (1+A000041(k)*x^k)))/2. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 30 2022

A306319 Number of length-rectangular twice-partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 35, 60, 82, 131, 177, 286, 376, 582, 793, 1202, 1610, 2450, 3274, 4906, 6665, 9770, 13274, 19690, 26506, 38596, 53006, 76432, 104189, 150844, 205282, 294304, 404146, 573140, 786169, 1119457, 1527554, 2155953, 2965567, 4163955, 5701816
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2019

Keywords

Comments

A twice partition of n is a sequence of integer partitions, one of each part in an integer partition of n. It is length-rectangular if all parts have the same number of parts.

Examples

			The a(5) = 14 length-rectangular twice-partitions:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Dominates A319066 (rectangular partitions of partitions), which dominates A323429 (rectangular plane partitions).
Cf. A000219, A001970, A063834 (twice-partitions), A089299, A271619, A279787 (sum-rectangular twice-partitions), A305551, A306017, A306318 (square case), A323531.

Programs

  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],SameQ@@Length/@#&],{ptn,IntegerPartitions[n]}]],{n,20}]

A336137 Number of set partitions of the binary indices of n with equal block-sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(n) set partitions for n = 7, 59, 119, 367, 127:
  {123}    {12456}      {123567}      {1234679}    {1234567}
  {12}{3}  {126}{45}    {1236}{57}    {12346}{79}  {1247}{356}
           {15}{24}{6}  {156}{237}    {1249}{367}  {1256}{347}
                        {17}{26}{35}  {1267}{349}  {1346}{257}
                                      {169}{2347}  {167}{2345}
                                                   {16}{25}{34}{7}
The binary indices of 382 are {2,3,4,5,6,7,9}, with equal block-sum set partitions:
  {{2,7},{3,6},{4,5},{9}}
  {{2,4,6},{3,9},{5,7}}
  {{2,7,9},{3,4,5,6}}
  {{2,3,4,9},{5,6,7}}
  {{2,3,6,7},{4,5,9}}
  {{2,4,5,7},{3,6,9}}
  {{2,3,4,5,6,7,9}}
so a(382) = 7.
		

Crossrefs

These set partitions are counted by A035470.
The version for twice-partitions is A279787.
The version for partitions of partitions is A305551.
The version for factorizations is A321455.
The version for normal multiset partitions is A326518.
The version for distinct block-sums is A336138.
Set partitions of binary indices are A050315.
Normal multiset partitions with equal lengths are A317583.
Normal multiset partitions with equal averages are A326520.
Multiset partitions with equal block-sums are ranked by A326534.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[bpe[n]],SameQ@@Total/@#&]],{n,0,100}]

A358906 Number of finite sequences of distinct integer partitions with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 13 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((1)(11))  ((1)(3))
                 ((11)(1))  ((3)(1))
                            ((11)(2))
                            ((1)(21))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330463(n,k) * k!.

A330462 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  0
  0  2  1  0
  0  2  2  0  0
  0  3  4  0  0  0
  0  4  6  2  0  0  0
  0  5 11  3  0  0  0  0
  0  6 16  8  0  0  0  0  0
  0  8 25 15  1  0  0  0  0  0
  0 10 35 28  4  0  0  0  0  0  0
  ...
Row n = 7 counts the following set-systems:
  {{7}}      {{1},{6}}      {{1},{2},{4}}
  {{1,6}}    {{2},{5}}      {{1},{2},{1,3}}
  {{2,5}}    {{3},{4}}      {{1},{3},{1,2}}
  {{3,4}}    {{1},{1,5}}
  {{1,2,4}}  {{1},{2,4}}
             {{2},{1,4}}
             {{2},{2,3}}
             {{3},{1,3}}
             {{4},{1,2}}
             {{1},{1,2,3}}
             {{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
  • PARI
    L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
    A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

G.f.: Product_{j>=1} (1 + y*x^j)^A000009(j). - Andrew Howroyd, Dec 29 2019

A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.

Original entry on oeis.org

1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of integer partitions finer than (n, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + n ordered by refinement.
a(n+1)/a(n) appears to converge as n -> oo. - Chai Wah Wu, Nov 14 2018

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (1)  (21)   (321)     (4321)
       (111)  (2211)    (32221)
              (3111)    (33211)
              (21111)   (42211)
              (111111)  (43111)
                        (222211)
                        (322111)
                        (331111)
                        (421111)
                        (2221111)
                        (3211111)
                        (4111111)
                        (22111111)
                        (31111111)
                        (211111111)
                        (1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A321470_gen(): # generator of terms
        aset = {(1,)}
        yield 1
        for n in count(2):
            yield len(aset)
            aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
    A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023

Formula

a(n) <= A173519(n). - David A. Corneth, Sep 20 2023

Extensions

a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023

A330452 Number of set partitions of strict multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2019

Keywords

Comments

Number of sets of disjoint nonempty sets of nonempty multisets of positive integers with total sum n.

Examples

			The a(4) = 13 partitions:
  ((4))  ((22))  ((31))      ((211))      ((1111))
                 ((1)(3))    ((1)(21))    ((1)(111))
                 ((1))((3))  ((2)(11))    ((1))((111))
                             ((1))((21))
                             ((2))((11))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
  • PARI
    \\ here BellP is A000110 as series.
    BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
    seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019

Formula

a(n) = Sum_{0 <= k <= n} A330463(n,k) * A000110(k).

Extensions

Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019

A330460 Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 0, 0, 0, 0, 4, 5, 1, 0, 0, 0, 0, 5, 6, 1, 0, 0, 0, 0, 0, 6, 9, 2, 0, 0, 0, 0, 0, 0, 8, 13, 3, 0, 0, 0, 0, 0, 0, 0, 10, 23, 10, 1, 0, 0, 0, 0, 0, 0, 0, 12, 27, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 15, 40, 19, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  0
  0  2  1  0
  0  2  1  0  0
  0  3  2  0  0  0
  0  4  5  1  0  0  0
  0  5  6  1  0  0  0  0
  0  6  9  2  0  0  0  0  0
  0  8 13  3  0  0  0  0  0  0
  0 10 23 10  1  0  0  0  0  0  0
  0 12 27 11  1  0  0  0  0  0  0  0
  0 15 40 19  2  0  0  0  0  0  0  0  0
Row n = 8 counts the following set partitions:
  {{8}}      {{1},{7}}    {{1},{2},{5}}
  {{3,5}}    {{2},{6}}    {{1},{3},{4}}
  {{2,6}}    {{3},{5}}
  {{1,7}}    {{1},{3,4}}
  {{1,3,4}}  {{1},{2,5}}
  {{1,2,5}}  {{2},{1,5}}
             {{3},{1,4}}
             {{4},{1,3}}
             {{5},{1,2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 k*
             b(n-i, t, k)+b(n-i, t, k+1))(min(n-i, i-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Dec 29 2019
  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],Length[#]==k&&And[UnsameQ@@#,UnsameQ@@Join@@#]&]],{n,0,10},{k,0,n}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, x^k, b[n, i-1, k] + Function[t, k*b[n-i, t, k] + b[n-i, t, k + 1]][Min[n-i, i-1]]]];
    T[n_] := PadRight[CoefficientList[b[n, n, 0], x], n + 1];
    T /@ Range[0, 15] // Flatten (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)
  • PARI
    A(n)={my(v=Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n)))); vector(#v, n, my(p=v[n]); vector(n, k, sum(i=k, n, polcoef(p,i-1)*stirling(i-1, k-1, 2))))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

T(n,k) = Sum_{k <= i <= n} A060016(n,i) * A008277(i,k).
For n > 0, T(n,2) = Sum_{k = 1..n} (2^(k - 1) -1) * A060016(n,k).

A330463 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty multisets of positive integers with total sum n.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 5, 4, 0, 0, 0, 7, 11, 1, 0, 0, 0, 11, 20, 6, 0, 0, 0, 0, 15, 40, 16, 0, 0, 0, 0, 0, 22, 68, 40, 3, 0, 0, 0, 0, 0, 30, 120, 91, 11, 0, 0, 0, 0, 0, 0, 42, 195, 186, 41, 0, 0, 0, 0, 0, 0, 0, 56, 320, 367, 105, 3, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  2  0
  0  3  2  0
  0  5  4  0  0
  0  7 11  1  0  0
  0 11 20  6  0  0  0
  0 15 40 16  0  0  0  0
  0 22 68 40  3  0  0  0  0
  ...
Row n = 5 counts the following sets of multisets:
  {{5}}          {{1},{4}}        {{1},{2},{1,1}}
  {{1,4}}        {{2},{3}}
  {{2,3}}        {{1},{1,3}}
  {{1,1,3}}      {{1},{2,2}}
  {{1,2,2}}      {{2},{1,2}}
  {{1,1,1,2}}    {{3},{1,1}}
  {{1,1,1,1,1}}  {{1},{1,1,2}}
                 {{1,1},{1,2}}
                 {{2},{1,1,1}}
                 {{1},{1,1,1,1}}
                 {{1,1},{1,1,1}}
		

Crossrefs

Row sums are A261049.
Column k = 1 is A000041.
Multisets of multisets are A061260, with row sums A001970.
Sets of sets are A330462, with row sums A050342.
Multisets of sets are A285229, with row sums A089259.
Sets of disjoint sets are A330460, with row sums A294617.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(
           combinat[numbpart](i), j)*expand(b(n-i*j, i-1)*x^j), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Dec 30 2019
  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],And[UnsameQ@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[
         PartitionsP[i], j]*Expand[b[n - i*j, i - 1]*x^j], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
  • PARI
    A(n)={my(v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, Vecrev(v[n],n))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

G.f.: Product_{j>=1} (1 + y*x^j)^A000041(j). - Andrew Howroyd, Dec 29 2019

A336343 Number of ways to choose a strict partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2020

Keywords

Comments

A strict composition of n (A032020) is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(5) = 11 ways:
  (1)  (2)  (3)      (4)        (5)
            (2,1)    (3,1)      (3,2)
            (1),(2)  (1),(3)    (4,1)
            (2),(1)  (3),(1)    (1),(4)
                     (1),(2,1)  (2),(3)
                     (2,1),(1)  (3),(2)
                                (4),(1)
                                (1),(3,1)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of strict partitions are A072706.
Set partitions of strict partitions are A294617.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
  • PARI
    \\ here Q(N) gives A000009 as a vector.
    Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
    seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000009(j)). - Andrew Howroyd, Apr 16 2021
Previous Showing 21-30 of 56 results. Next