cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A129202 Denominator of 3*(3+(-1)^n) / (n+1)^2.

Original entry on oeis.org

1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54, 361, 200, 147, 242, 529, 96, 625, 338, 243, 392, 841, 150, 961, 512, 363, 578, 1225, 216, 1369, 722, 507, 800, 1681, 294, 1849, 968, 675, 1058, 2209, 384, 2401, 1250, 867, 1352, 2809, 486
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

A divisibility sequence, that is, if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A026741, A051176, A129196, A129197 (numerators), A060789.

Programs

  • Magma
    [Denominator(3*(3+(-1)^n)/(n+1)^2): n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    A129202:=n->numer((n+1)/2)*numer((n+1)/3): seq(A129202(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2014
  • Mathematica
    Table[Numerator[(n + 1)/2] Numerator[(n + 1)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 18 2014 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 1}, {1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54}, 60] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    for(n=0,50, print1(denominator(3*(3+(-1)^n)/(n+1)^2), ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = A129196(n)/(n+1).
(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt = (a(n)*Pi^2-A129203(n))/A129196(n), i=sqrt(-1).
a(n) = ( Numerator of (n+1)/2 ) * ( Numerator of (n+1)/3 ) = A026741(n+1) * A051176(n+1). - Wesley Ivan Hurt, Jul 18 2014
G.f.: -(x^16 +2*x^15 +3*x^14 +8*x^13 +25*x^12 +6*x^11 +46*x^10 +26*x^9 +18*x^8 +26*x^7 +46*x^6 +6*x^5 +25*x^4 +8*x^3 +3*x^2 +2*x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^3). - Colin Barker, Jul 18 2014
a(n+18) = 3*a(n+12)-3*a(n+6)+a(n). - Robert Israel, Jul 18 2014
a(n) = 2*(n+1)^2 * (7-4*cos(2*Pi*(n+1)/3)) / (9*(3-(-1)^n)). - Vaclav Kotesovec, Jul 20 2014
From Peter Bala, Feb 27 2019: (Start)
The following remarks assume an offset of 1.
a(n) = n^2/gcd(n,6) = n*A060789(n).
a(n) = n^2/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6. Thus a(n) is a quasi-polynomial in n:
a(6*n+1) = (6*n + 1)^2;
a(6*n+2) = 2*(3*n + 1)^2;
a(6*n+3) = 3*(2*n + 1)^2;
a(6*n+4) = 2*(3*n + 2)^2;
a(6*n+5) = (6*n + 5)^2;
a(6*n) = 6*n^2.
O.g.f.: F(x) - 2*F(x^2) - 6*F(x^3) + 12*F(x^6), where F(x) = x*(1 + x)/(1 - x)^3 is the generating function for the squares. (End)
Sum_{n>=0} 1/a(n) = 55*Pi^2/216. - Amiram Eldar, Sep 27 2022

Extensions

More terms from Wesley Ivan Hurt, Jul 18 2014

A227140 a(n) = n/gcd(n,2^5), n >= 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 65, 33, 67, 17, 69, 35
Offset: 0

Views

Author

Wolfdieter Lang, Jul 04 2013

Keywords

Comments

H(n,4) = 2*n*4/(n+4) is the harmonic mean of n and 4. For n >= 4 the denominator of H(n,4) is (n+4)/gcd(8*n,n+4) = (n+4)/gcd(n+4,32). a(n+8) = A227042(n+4,4), n >= 0. The numerator of H(n,4) is given in A227107. Thus a(n) is related to denominator of the harmonic mean H(n-4, 4).
Note the difference from A000265(n) (odd part of n) = n/gcd(n,2^n), n >= 1, which differs for the first time for n = 64. a(64) = 2, not 1.
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Programs

  • GAP
    List([0..80], n-> n/Gcd(n, 2^5)); # G. C. Greubel, Feb 27 2019
  • Magma
    [n/GCD(n, 2^5): n in [0..80]]; // G. C. Greubel, Feb 27 2019
    
  • Maple
    seq(n/igcd(n,32),n=0..70); # Muniru A Asiru, Feb 28 2019
  • Mathematica
    With[{c=2^5},Table[n/GCD[n,c],{n,0,70}]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    a(n)=n/gcd(n, 2^5); \\ Andrew Howroyd, Jul 23 2018
    
  • Sage
    [n/gcd(n,2^5) for n in (0..80)] # G. C. Greubel, Feb 27 2019
    

Formula

a(n) = n/gcd(n, 2^5).
a(n) = denominator(8*(n-4)/n), n >= 0 (with denominator(infinity) = 0).
From Peter Bala, Feb 27 2019: (Start)
a(n) = numerator(n/(n + 32)).
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - F(x^16) - F(x^32), where F(x) = x/(1 - x)^2. Cf. A106617. (End)
From Bernard Schott, Mar 02 2019: (Start)
a(n) = 1 iff n is 1, 2, 4, 8, 16, 32 and a(2^n) = 2^(n-5) for n >= 5.
a(n) = n iff n is odd (A005408). (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e-min(e,5)), and a(p^e) = p^e for p > 2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s)).
Sum_{k=1..n} a(k) ~ (683/2048) * n^2. (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A306368 a(n) = numerator of (n + 3)*(n + 4)/((n + 1)*(n + 2)).

Original entry on oeis.org

6, 10, 5, 21, 28, 12, 45, 55, 22, 78, 91, 35, 120, 136, 51, 171, 190, 70, 231, 253, 92, 300, 325, 117, 378, 406, 145, 465, 496, 176, 561, 595, 210, 666, 703, 247, 780, 820, 287, 903, 946, 330, 1035, 1081, 376, 1176, 1225, 425, 1326, 1378, 477, 1485, 1540, 532, 1653, 1711, 590
Offset: 0

Views

Author

Peter Bala, Feb 14 2019

Keywords

Comments

If P(x) and Q(x) are coprime integral polynomials such that Q(n) > 0 for n >= 0 then the sequence of numerators of the rational numbers P(n)/Q(n) for n >= 0 and the sequence of denominators of P(n)/Q(n) for n >= 0 are both quasi-polynomial in n. In fact, there exists a purely periodic sequence b(n) such that numerator(P(n)/Q(n)) = P(n)/b(n) and denominator(P(n)/Q(n)) = Q(n)/b(n). Here we take P(n) = (n + 3)*(n + 4) and Q(n) = (n + 1)*(n + 2).

Crossrefs

Programs

  • GAP
    List([0..100],n->NumeratorRat((n+3)*(n+4)/((n+1)*(n+2)))); # Muniru A Asiru, Feb 25 2019
    
  • Maple
    seq((n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)), n = 0..100);
  • Mathematica
    Table[((n+3)(n+4))/((n+1)(n+2)),{n,0,60}]//Numerator (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{6,10,5,21,28,12,45,55,22},60] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    a(n) = numerator((n + 3)*(n + 4)/((n + 1)*(n + 2))); \\ Michel Marcus, Feb 26 2019

Formula

O.g.f.: (x^8 + x^7 - 3*x^5 - 2*x^4 + 3*x^3 + 5*x^2 + 10*x + 6)/((1 - x)^3*(x^2 + x + 1)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n >= 9.
a(n) = (n + 3)*(n + 4)/b(n), where (b(n))n>=0 is the purely periodic sequence [2, 2, 6, 2, 2, 6, ...] with period 3.
a(n) = (n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)).
a(3*n) = (3*n + 3)*(3*n + 4)/2 = A081266(n+1).
a(3*n+1) = (3*n + 4)*(3*n + 5)/2 = A060544(n+2).
a(3*n+2) = (n + 2)*(3*n + 5)/2 = A000326(n+2).
Sum_{n>=0} 1/a(n) = 2*log(3) - 2*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022

A027626 Denominator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

1, 2, 10, 5, 7, 28, 12, 15, 55, 22, 26, 91, 35, 40, 136, 51, 57, 190, 70, 77, 253, 92, 100, 325, 117, 126, 406, 145, 155, 496, 176, 187, 595, 210, 222, 703, 247, 260, 820, 287, 301, 946, 330, 345, 1081, 376, 392, 1225, 425, 442, 1378, 477, 495, 1540, 532, 551
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Denominator(n*(n+5)/((n+2)*(n+3))): n in [0..60]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[(1+2*x+10*x^2+2*x^3+x^4-2*x^5+x^8)/(1-x^3)^3, {x,0,50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
  • PARI
    a(n) = numerator((n+2)*(n+3)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(binomial(n+3,2)/3) for n in (0..60)] # G. C. Greubel, Aug 04 2022

Formula

a(n) = GCD of n-th and (n+1)st tetrahedral numbers (A000292). - Ross La Haye, Sep 13 2003
G.f.: (1 +2*x +10*x^2 +2*x^3 +x^4 -2*x^5 +x^8)/(1-x^3)^3.
a(n) = A234041(n+1) = A107711(n+4,3) = C(n+3,2)*gcd(n+4,3)/3 for n >= 0. See the o.g.f. of A234041. - Wolfdieter Lang, Feb 26 2014
a(n) = numerator of (n+2)*(n+3)/6. - Altug Alkan, Apr 18 2018
Sum_{n>=0} 1/a(n) = 5 - 4*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022
a(n) = (n + 2)*(n + 3)*(5 - 2*A061347(n+1))/18. - Stefano Spezia, Oct 16 2023
a(n) is quasi-polynomial in n: a(3*n) = (n+1)*(3*n+2)/2 = A000326(n+1); a(3*n+1) = (n+1)*(3*n+4)/2 = A005449(n+1); a(3*n+2) = (3*n+4)*(3*n+5)/2 = A060544(n+2). - Peter Bala, Nov 20 2024

Extensions

More terms from Vincenzo Librandi, Mar 04 2014

A276234 a(n) = n/gcd(n, 256).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

Artur Jasinski, Aug 24 2016

Keywords

Comments

a(n) first differs from A000265(n) at n = 512. - Andrew Howroyd, Jul 23 2018
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A276233 (numerators), A227140, A000265, A106617.

Programs

Formula

a(2k-1) = 2k-1.
G.f.: (x+x^3)/(1-x^2)^2 +(x^2+x^6)/(1-x^4)^2 +(x^4+x^12)/(1-x^8)^2 +(x^8+x^24)/(1-x^16)^2 +(x^16+x^48)/(1-x^32)^2 +(x^32+x^96)/(1-x^64)^2 +(x^64+x^192)/(1-x^128)^2 +(x^128+x^256+x^384)/(1-x^256)^2. - Robert Israel, Aug 26 2016
a(n) = 2*a(n-256) - a(n-512). - Charles R Greathouse IV, Aug 26 2016
From Peter Bala, Feb 27 2019: (Start)
a(n) = numerator(n/(n + 256)).
O.g.f.: F(x) - Sum_{k = 1..8} F(x^(2^k)), where F(x) = x/(1 - x)^2. Cf. A106617. (End)
From Amiram Eldar, Nov 26 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s) - 1/2^(6*s) - 1/2^(7*s) - 1/2^(8*s)).
Multiplicative with a(2^e) = 2^(e-min(e,8)), and a(p^e) = p^e for p > 2.
Sum_{k=1..n} a(k) ~ (43691/131072) * n^2. (End)

Extensions

Keyword:mult added and terms a(51) and beyond from Andrew Howroyd, Jul 23 2018
Previous Showing 11-15 of 15 results.