A008826
Triangle of coefficients from fractional iteration of e^x - 1.
Original entry on oeis.org
1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2
Triangle starts:
1;
1, 3;
1, 13, 18;
1, 50, 205, 180;
1, 201, 1865, 4245, 2700;
1, 875, 16674, 74165, 114345, 56700;
1, 4138, 155477, 1208830, 3394790, 3919860, 1587600;
...
The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
Alternating row sums are signed factorials
A133942(n-1).
Cf.
A000110,
A000111,
A000258,
A002846,
A005121,
A008277,
A306186,
A317176,
A318813,
A320154,
A330667,
A330679,
A330784.
-
b:= proc(n) option remember; expand(`if`(n=1, 1,
add(Stirling2(n, j)*b(j)*x, j=0..n-1)))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=1..n-1), n=2..10); # Alois P. Heinz, Mar 31 2023
-
a[n_, x_] := Sum[ StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; a[1, ] = 1; Table[ CoefficientList[ a[n, x], x] // Rest, {n, 2, 10}] // Flatten (* _Jean-François Alcover, Dec 11 2012, after Vladeta Jovovic *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
tots[m_]:=Prepend[Join@@Table[tots[p],{p,Select[sps[m],1Gus Wiseman, Jan 02 2020 *)
A318848
Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1
The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
(1(1(23)))
(1(2(13)))
(1(3(12)))
(2(1(13)))
(2(3(11)))
(3(1(12)))
(3(2(11)))
((11)(23))
((12)(13))
(1(123))
(2(113))
(3(112))
(11(23))
(12(13))
(13(12))
(23(11))
(1123)
Cf.
A000311,
A001055,
A196545,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813,
A318846,
A318847,
A318849.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]
A330668
Number of non-isomorphic balanced reduced multisystems of weight n whose leaves (which are multisets of atoms) are all sets.
Original entry on oeis.org
1, 1, 1, 3, 22, 204, 2953
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 22 multisystems:
{1} {1,2} {1,2,3} {1,2,3,4}
{{1},{1,2}} {{1},{1,2,3}}
{{1},{2,3}} {{1,2},{1,2}}
{{1,2},{1,3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{1},{1,2}}
{{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{3,4}}
{{{1}},{{1},{1,2}}}
{{{1}},{{1},{2,3}}}
{{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}}
{{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}}
{{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,3}}}
{{{2,3}},{{1},{1}}}
The case with all atoms different is
A318813.
The version where the leaves are multisets is
A330474.
Unlabeled series-reduced rooted trees whose leaves are sets are
A330624.
Cf.
A000311,
A004114,
A005121,
A005804,
A007716,
A048816,
A141268,
A283877,
A306186,
A318812,
A320154,
A330470,
A330628,
A330663.
A330666
Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
1 11 12 111 112 1111 123 1122
{1}{11} {1}{12} {1}{111} {1}{23} {1}{122}
{2}{11} {11}{11} {11}{22}
{1}{1}{11} {12}{12}
{{1}}{{1}{11}} {1}{1}{22}
{{11}}{{1}{1}} {1}{2}{12}
{{1}}{{1}{22}}
{{11}}{{2}{2}}
{{1}}{{2}{12}}
{{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
{1,1,2,3}
{{1},{1,2,3}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{2},{1,1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{2},{3},{1,1}}
{{{1}},{{1},{2,3}}}
{{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
{{{2,3}},{{1},{1}}}
The maximum-depth version is
A330664.
Unlabeled balanced reduced multisystems by weight are
A330474.
The case of constant or strict atoms is
A318813.
Cf.
A000669,
A005121,
A007716,
A048816,
A141268,
A306186,
A317791,
A318812,
A318849,
A330470,
A330475,
A330655,
A330728.
A330727
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
Final terms in each row are
A330728.
Column k = 3 is
A318284(n) - 2 for n > 2.
Cf.
A000111,
A002846,
A005121,
A292504,
A318812,
A318813,
A318847,
A318848,
A318849,
A330475,
A330666,
A330935.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A318847
Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1
The a(6) = 6 tree-partitions of {1,1,2}:
(112)
((1)(12))
((2)(11))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
Cf.
A000311,
A001055,
A196545,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813,
A318846,
A318848.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[allmsptrees[nrmptn[n]]],{n,20}]
A330776
Triangle read by rows: T(n,k) is the number of balanced reduced multisystems of weight n with atoms colored using exactly k colors.
Original entry on oeis.org
1, 1, 1, 2, 6, 4, 6, 37, 63, 32, 20, 262, 870, 1064, 436, 90, 2217, 12633, 27824, 26330, 9012, 468, 21882, 201654, 710712, 1163320, 895608, 262760, 2910, 249852, 3578610, 18924846, 47608000, 61786254, 40042128, 10270696, 20644, 3245520, 70539124, 538018360, 1950556400, 3792461176, 4070160416, 2275829088, 518277560
Offset: 1
Triangle begins:
1;
1, 1;
2, 6, 4;
6, 37, 63, 32;
20, 262, 870, 1064, 436;
90, 2217, 12633, 27824, 26330, 9012;
468, 21882, 201654, 710712, 1163320, 895608, 262760;
...
The T(3,2) = 6 balanced reduced multisystems are: {1,1,2}, {1,2,2}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))}
A330784
Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 9, 28, 36, 16, 1, 13, 69, 160, 164, 61, 1, 20, 160, 580, 1022, 855, 272, 1, 28, 337, 1837, 4996, 7072, 4988, 1385
Offset: 2
Triangle begins:
1
1 1
1 3 2
1 5 9 5
1 9 28 36 16
1 13 69 160 164 61
1 20 160 580 1022 855 272
1 28 337 1837 4996 7072 4988 1385
Row n = 5 counts the following multisystems (strings of 1's are replaced by their lengths):
5 {1,4} {{1},{1,3}} {{{1}},{{1},{1,2}}}
{2,3} {{1},{2,2}} {{{1,1}},{{1},{2}}}
{1,1,3} {{2},{1,2}} {{{1}},{{2},{1,1}}}
{1,2,2} {{3},{1,1}} {{{1,2}},{{1},{1}}}
{1,1,1,2} {{1},{1,1,2}} {{{2}},{{1},{1,1}}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
Cf.
A000669,
A001055,
A002846,
A005121,
A196545,
A213427,
A318812,
A320160,
A330474,
A330475,
A330655,
A330667,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330726
Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.
Original entry on oeis.org
1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
Offset: 0
The a(1) = 1 through a(5) = 17 multisystems (commas elided):
{1} {2} {3} {4} {5}
{11} {12} {22} {23}
{{1}{11}} {13} {14}
{{1}{12}} {{1}{13}}
{{2}{11}} {{1}{22}}
{{{1}}{{1}{11}}} {{2}{12}}
{{{11}}{{1}{1}}} {{3}{11}}
{{{1}}{{1}{12}}}
{{{11}}{{1}{2}}}
{{{1}}{{2}{11}}}
{{{12}}{{1}{1}}}
{{{2}}{{1}{11}}}
{{{{1}}}{{{1}}{{1}{11}}}}
{{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
The case with all atoms equal to 1 is
A000111.
The non-maximal version is
A330679.
Cf.
A000669,
A002846,
A005121,
A141268,
A196545,
A213427,
A317145,
A318813,
A330663,
A330665,
A330675,
A330676,
A330728.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330785
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
The version for set partitions is
A008826.
The version for factorizations is
A330935.
Cf.
A000111,
A000258,
A000311,
A005121,
A141268,
A196545,
A265947,
A300383,
A306186,
A317141,
A317176,
A318813,
A320160,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
Comments