cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A361264 Multiplicative with a(p^e) = p^(e + 2), e > 0.

Original entry on oeis.org

1, 8, 27, 16, 125, 216, 343, 32, 81, 1000, 1331, 432, 2197, 2744, 3375, 64, 4913, 648, 6859, 2000, 9261, 10648, 12167, 864, 625, 17576, 243, 5488, 24389, 27000, 29791, 128, 35937, 39304, 42875, 1296, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 21296, 10125
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + p^3*X/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + p^3/(p^s - p)).
Dirichlet g.f.: zeta(s-3) * zeta(s-1) * Product_{primes p} (1 + p^(4-2*s) - p^(6-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.53589615382833799980850263131854595064822237...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^2 = A064549(n) * A007947(n) = A064549(A064549(n)).
A000005(a(n)) = A360997(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) = A065483. (End)

A114810 Number of complex, weakly primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 2, 4, 4, 10, 2, 12, 6, 8, 4, 16, 4, 18, 4, 12, 10, 22, 4, 16, 12, 12, 6, 28, 8, 30, 8, 20, 16, 24, 4, 36, 18, 24, 8, 40, 12, 42, 10, 16, 22, 46, 8, 36, 16, 32, 12, 52, 12, 40, 12, 36, 28, 58, 8, 60, 30, 24, 16, 48, 20, 66, 16, 44, 24, 70, 8, 72, 36, 32, 18, 60, 24, 78
Offset: 1

Views

Author

Steven Finch, Feb 19 2006

Keywords

Comments

Any primitive Dirichlet character is weakly primitive (not conversely). Jager uses the phrase "proper character", but this conflicts with other authors (e.g., W. Ellison and F. Ellison, Prime Numbers, Wiley, 1985, p. 224) who use the word "proper" to mean the same as "primitive".
Equals Mobius transform of A055653. - Gary W. Adamson, Feb 28 2009

Examples

			The function chi defined on the integers by chi(1)=1, chi(5)=-1 and chi(2)=chi(3)=chi(4)=chi(6)=0 [and extended periodically] is a weakly primitive character mod 6, but not mod 12 or mod 18. In this sense, we eliminate the "overcounting" of complex Dirichlet characters in A000010.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[EulerPhi[d]*MoebiusMu[n/d], {d, Divisors[n]}]; squareFreeKernel[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Sum[b[n/d], {d, Divisors[Denominator[n/squareFreeKernel[n]^2]]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Sep 07 2015 *)
    f[p_, e_] := If[e == 1, p - 1, (p - 1)^2*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2022 *)

Formula

a(n) is multiplicative with a(p) = phi(p), a(p^k) = phi(p^k)-phi(p^(k-1)) and phi(n) = A000010(n).
a(n) = Sum_{d} A007431(n/d), where the sum is over all divisors 1<=d<=n of A055231(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 / 2 = 0.2679480769... . - Amiram Eldar, Nov 04 2022

A175639 Decimal expansion of Product_{p prime} (1-3/p^3+2/p^4+1/p^5-1/p^6).

Original entry on oeis.org

6, 7, 8, 2, 3, 4, 4, 9, 1, 9, 1, 7, 3, 9, 1, 9, 7, 8, 0, 3, 5, 5, 3, 8, 2, 7, 9, 4, 8, 2, 8, 9, 4, 8, 1, 4, 0, 9, 6, 3, 3, 2, 2, 3, 9, 1, 8, 9, 4, 4, 0, 1, 0, 3, 0, 3, 6, 4, 6, 0, 4, 1, 5, 9, 6, 4, 9, 8, 3, 3, 7, 0, 7, 4, 0, 1, 2, 3, 2, 3, 3, 2, 1, 3, 7, 6, 2, 1, 2, 2, 9, 3, 3, 4, 8, 4, 6, 1, 6, 8, 8, 8, 3, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Equals (49/64)*(668/729)*(15304/15625)*(116724/117649)*... inserting p= A000040 = 2, 3, 5, 7.. into the factor. Slightly larger than Product_{p=primes} (1-3/p^3) = 0.534566872085103888416775...

Examples

			0.678234491917391978035...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1-3/p^3+2/p^4+1/p^5-1/p^6 ; Digits := 130 : tm := 310 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 105; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s];
    LR = LinearRecurrence[{0, 0, 3, -2, -1, 1}, {0, 0, -9, 8, 5, -33}, 2 m0];
    r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-3/p^3+2/p^4+1/p^5-1/p^6) \\ Amiram Eldar, Mar 04 2021

Extensions

More digits from Jean-François Alcover, Apr 15 2016

A318661 Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 3, 19, 5, 11, 3, 13, 7, 15, 5, 17, 19, 19, 5, 21, 11, 23, 9, 59, 13, 95, 7, 29, 15, 31, 9, 33, 17, 35, 19, 37, 19, 39, 15, 41, 21, 43, 11, 95, 23, 47, 15, 123, 59, 51, 13, 53, 95, 55, 21, 57, 29, 59, 15, 61, 31, 133, 67, 65, 33, 67, 17, 69, 35, 71, 57, 73, 37, 177, 19, 77, 39, 79, 25, 2019, 41, 83, 21, 85, 43, 87, 33, 89
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Crossrefs

Cf. A055653, A318662 (denominators).

Programs

  • PARI
    up_to = 1+(2^16);
    A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA055653(n)));
    A318661(n) = numerator(v318661_62[n]);
    A318662(n) = denominator(v318661_62[n]);
    A318663(n) = valuation(A318662(n),2);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 10 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 1/p^(2*s-1) - 1/p^s).
Sum_{k=1..n} A318661(k) / A318662(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - ((gamma - 1)/2 + f'[2]/(2*f(2)) + 3*zeta'(2)/Pi^2) / (2*log(n))), where
f(2) = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...
f'(2)/f(2) = Sum_{primes p} (p^2 + 2*p - 2) * log(p) / (p^4 - p^2 - p + 1) = 0.8249574883141571786856463180997569604486048593127391054584235479395133668...
and gamma is the Euler-Mascheroni constant A001620. (End)

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002

A340065 Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 8, 1, 0, 7, 8, 1, 4, 7, 6, 1, 2, 1, 5, 6, 2, 9, 5, 2, 2, 4, 3, 1, 2, 5, 9, 0, 4, 4, 8, 6, 2, 5, 1, 8, 0, 8, 9, 7, 2, 5, 0, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).

Examples

			1.8107814761215629522431259...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[5005/2764,105]][[1]]
  • PARI
    default(realprecision,105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))

Formula

Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024

A340066 Decimal expansion of the Product_{p>=3} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 2, 5, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6, 3, 0, 9, 6, 9, 6, 0, 9, 2, 6, 1, 9, 3, 9, 2, 1, 8, 5, 2, 3, 8, 7, 8, 4, 3, 7, 0, 4, 7, 7, 5, 6, 8, 7, 4, 0, 9, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/zeta^2(2*n) = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.25(3617945007235890014471780028943560057887120115774240231548480463096960
9261939218523878437047756874095513748191027496382054992764109985528219
9710564399421128798842257597684515195369030390738060781476121562952243
12590448625180897250).

Examples

			1.25361794500723589001447178...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[3465/2764, 105]][[1]]
  • PARI
    default(realprecision, 105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2),1,3)

Formula

Equals 3465/2764 = 3^2*5*7*11/(2^2*691).
Equals Product_{n>=2} 1+A000040(n)^2/A084920(n)^2.
Equals (9/13)*A340065.

A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).

Original entry on oeis.org

1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
    Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
    f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End)

A341638 a(n) = Sum_{d|n} phi(d) * sigma(d) * tau(n/d).

Original entry on oeis.org

1, 5, 10, 23, 26, 50, 50, 101, 97, 130, 122, 230, 170, 250, 260, 427, 290, 485, 362, 598, 500, 610, 530, 1010, 671, 850, 904, 1150, 842, 1300, 962, 1761, 1220, 1450, 1300, 2231, 1370, 1810, 1700, 2626, 1682, 2500, 1850, 2806, 2522, 2650, 2210, 4270, 2493, 3355, 2900, 3910, 2810, 4520
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Inverse Moebius transform of A062952.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 54}]
    Table[Sum[DivisorSigma[0, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 54}]
    f[p_, e_] := (p^(2*e + 4) - p^(e + 3) - 2*p^(e + 2) - p^(e + 1) + (e + 1)*p^3 - (e - 1)*p + 1)/(p^2 - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*numdiv(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} tau(gcd(n,k)) * sigma(n/gcd(n,k)).
a(n) = Sum_{d|n} A062952(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*sigma(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
From Amiram Eldar, Jan 26 2023: (Start)
Multiplicative with a(p^e) = (p^(2*e+4) - p^(e+3) - 2*p^(e+2) - p^(e+1) + (e+1)*p^3 - (e-1)*p + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)^2/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661 * A002117^2 * A330523 / 3 = 0.424578... . (End)

A386624 a(n) = Sum_{d|n} sigma(d) * phi(d) * mu(n/d).

Original entry on oeis.org

1, 2, 7, 11, 23, 14, 47, 46, 70, 46, 119, 77, 167, 94, 161, 188, 287, 140, 359, 253, 329, 238, 527, 322, 596, 334, 642, 517, 839, 322, 959, 760, 833, 574, 1081, 770, 1367, 718, 1169, 1058, 1679, 658, 1847, 1309, 1610, 1054, 2207, 1316, 2346, 1192, 2009, 1837, 2807, 1284, 2737, 2162, 2513, 1678, 3479, 1771, 3719, 1918, 3290, 3056, 3841, 1666, 4487, 3157, 3689
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Comments

Möbius transform of sigma(n) * phi(n) = A062354(n).

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A062354, A330523.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 100}]
    f[p_, e_] := p^(2*e) - p^(e-1) - If[e > 1, p^(2*e-2) - p^(e-2), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 27 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2];  p^(2*e) - p^(e - 1) - if(e > 1, p^(2*e - 2) - p^(e - 2), 1));} \\ Amiram Eldar, Jul 27 2025

Formula

a(n) = Sum_{d|n} A062354(d) * mu(n/d).
From Amiram Eldar, Jul 27 2025: (Start)
Multiplicative with a(p) = p^2 - 2, and a(p^e) = p^(2*e) - p^(2*e-2) - p^(e-1) + p^(e-2) for e >= 2.
Dirichlet g.f.: (zeta(s-2) * zeta(s-1) / zeta(s)) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s + 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523*zeta(2)/(3*zeta(3)) = 0.24444595409976589792... . (End)
Previous Showing 11-20 of 20 results.