Original entry on oeis.org
1, 2, 7, 19, 54, 134, 354, 838, 2057, 4794, 11232, 25412, 58075, 128670, 286152, 625829, 1365653, 2941088, 6331146, 13474533, 28642325, 60404681, 127082128, 265712673, 554608226, 1151374963, 2385950536, 4924685252, 10145267212, 20831428273, 42708248451
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i<2, 2^n,
add(b(n-i*j, i-1)*ithprime(i)^j, j=0..iquo(n, i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..35); # Alois P. Heinz, Feb 19 2013
-
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, 2^n, Sum[b[n-i*j, i-1]*Prime[i]^j, {j, 0, Quotient[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
A334441
Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 1, 4, 2, 3, 2, 1, 5, 3, 4, 2, 3, 2, 1, 6, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 7, 4, 5, 6, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 8, 4, 5, 6, 7, 3, 4, 4, 5, 6, 2, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 9, 5, 6, 7, 8, 3, 4, 4, 5, 5, 6, 7, 3, 3, 4, 4, 5, 6, 2, 3, 3
Offset: 0
Triangle begins:
0
1
2 1
3 2 1
4 2 3 2 1
5 3 4 2 3 2 1
6 3 4 5 2 3 4 2 3 2 1
7 4 5 6 3 3 4 5 2 3 4 2 3 2 1
8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1
The length of the same partition is
A036043.
Ignoring partition length (sum/lex) gives
A036043 also.
The version for reversed partitions is
A049085.
a(n) is the maximum element in row n of
A334301.
The number of distinct parts in the same partition is
A334440.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in increasing-length colex order (sum/length/colex) are
A036037.
Graded reverse-lexicographically ordered partitions are
A080577.
Partitions counted by sum and number of distinct parts are
A116608.
Graded lexicographically ordered partitions are
A193073.
Partitions in colexicographic order (sum/colex) are
A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are
A334439.
Cf.
A001221,
A103921,
A124734,
A185974,
A296774,
A299755,
A334302,
A334433,
A334434,
A334435,
A334438.
-
Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}]
A334440
Irregular triangle T(n,k) read by rows: row n lists numbers of distinct parts of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3
Offset: 0
Triangle begins:
0
1
1 1
1 2 1
1 1 2 2 1
1 2 2 2 2 2 1
1 1 2 2 1 3 2 2 2 2 1
1 2 2 2 2 2 3 2 2 3 2 2 2 2 1
1 1 2 2 2 2 2 3 3 2 1 3 2 3 2 2 3 2 2 2 2 1
The number of not necessarily distinct parts is
A036043.
The version for reversed partitions is
A103921.
Ignoring length (sum/lex) gives
A103921 (also).
a(n) is the number of distinct elements in row n of
A334301.
The maximum part of the same partition is
A334441.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in increasing-length colex order (sum/length/colex) are
A036037.
Graded reverse-lexicographically ordered partitions are
A080577.
Partitions counted by sum and number of distinct parts are
A116608.
Graded lexicographically ordered partitions are
A193073.
Partitions in colexicographic order (sum/colex) are
A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are
A334439.
Cf.
A001221,
A049085,
A124734,
A185974,
A296774,
A299755,
A334028,
A334302,
A334433,
A334434,
A334435,
A334438.
A193173
Triangle in which n-th row lists the number of elements in lexicographically ordered partitions of n, A026791.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 5, 5, 4, 4, 3, 4, 3, 3, 2, 3, 2, 2, 1, 8, 7, 6, 6, 5, 5, 4, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 5, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 10, 9, 8, 8, 7, 7, 6, 7, 6
Offset: 1
The lexicographically ordered partitions of 3 are [[1, 1, 1], [1, 2], [3]], thus row 3 has 3, 2, 1.
Triangle begins:
1;
2, 1;
3, 2, 1;
4, 3, 2, 2, 1;
5, 4, 3, 3, 2, 2, 1;
6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1;
...
The version ignoring length is
A036043.
The version for non-reversed partitions is
A049085.
The maxima of these partitions are
A194546.
Reversed partitions in Abramowitz-Stegun order are
A036036.
Reverse-lexicographically ordered partitions are
A080577.
Cf.
A001222,
A115623,
A129129,
A185974,
A193073,
A211992,
A228531,
A334302,
A334434,
A334437,
A334440,
A334441.
-
T:= proc(n) local b, ll;
b:= proc(n,l)
if n=0 then ll:= ll, nops(l)
else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi
end;
ll:= NULL; b(n, []); ll
end:
seq(T(n), n=1..11);
-
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
Table[Length/@Sort[Reverse/@IntegerPartitions[n],lexsort],{n,0,10}] (* Gus Wiseman, May 22 2020 *)
A331581
Maximum part of the n-th integer partition in graded reverse-lexicographic order (A080577); a(1) = 0.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1
Offset: 1
The sequence of all partitions in graded reverse-lexicographic order begins as follows. The terms are the initial parts.
() (3,2) (2,1,1,1,1) (2,2,1,1,1)
(1) (3,1,1) (1,1,1,1,1,1) (2,1,1,1,1,1)
(2) (2,2,1) (7) (1,1,1,1,1,1,1)
(1,1) (2,1,1,1) (6,1) (8)
(3) (1,1,1,1,1) (5,2) (7,1)
(2,1) (6) (5,1,1) (6,2)
(1,1,1) (5,1) (4,3) (6,1,1)
(4) (4,2) (4,2,1) (5,3)
(3,1) (4,1,1) (4,1,1,1) (5,2,1)
(2,2) (3,3) (3,3,1) (5,1,1,1)
(2,1,1) (3,2,1) (3,2,2) (4,4)
(1,1,1,1) (3,1,1,1) (3,2,1,1) (4,3,1)
(5) (2,2,2) (3,1,1,1,1) (4,2,2)
(4,1) (2,2,1,1) (2,2,2,1) (4,2,1,1)
Triangle begins:
0
1
2 1
3 2 1
4 3 2 2 1
5 4 3 3 2 2 1
6 5 4 4 3 3 3 2 2 2 1
7 6 5 5 4 4 4 3 3 3 3 2 2 2 1
8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1
Lexicographically ordered reversed partitions are
A026791.
Reverse-colexicographically ordered partitions are
A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are
A036036.
Reverse-lexicographically ordered partitions are
A080577.
Distinct parts of these partitions are counted by
A115623.
Lexicographically ordered partitions are
A193073.
Colexicographically ordered partitions are
A211992.
Lengths of these partitions are
A238966.
Cf.
A036037,
A048793,
A063008,
A066099,
A129129,
A185974,
A228100,
A228531,
A334301,
A334434,
A334436,
A334438.
-
revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
Prepend[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0]
A344086
Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.
Original entry on oeis.org
1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (21)(3)
4: (31)(4)
5: (32)(41)(5)
6: (321)(42)(51)(6)
7: (421)(43)(52)(61)(7)
8: (431)(521)(53)(62)(71)(8)
9: (432)(531)(54)(621)(63)(72)(81)(9)
Positions of first appearances are
A015724.
Taking revlex instead of lex gives
A118457.
The not necessarily strict version is
A193073.
The version for reversed partitions is
A246688.
The Heinz numbers of these partitions grouped by sum are
A246867.
The ordered generalization is
A339351.
Taking colex instead of lex gives
A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A211992,
A228100,
A228351,
A228531,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A344085,
A344086,
A344088,
A344089.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]
A333484
Sort all positive integers, first by sum of prime indices (A056239), then by decreasing number of prime indices (A001222).
Original entry on oeis.org
1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 14, 15, 11, 64, 48, 36, 40, 27, 28, 30, 21, 22, 25, 13, 128, 96, 72, 80, 54, 56, 60, 42, 44, 45, 50, 26, 33, 35, 17, 256, 192, 144, 160, 108, 112, 120, 81, 84, 88, 90, 100, 52, 63, 66, 70, 75, 34, 39, 49, 55, 19
Offset: 0
Triangle begins:
1
2
4 3
8 6 5
16 12 9 10 7
32 24 18 20 14 15 11
64 48 36 40 27 28 30 21 22 25 13
128 96 72 80 54 56 60 42 44 45 50 26 33 35 17
Ignoring length gives
A215366 (graded Heinz numbers).
Sorting by increasing length gives
A333483.
Number of prime indices is
A001222.
Lexicographically ordered reversed partitions are
A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in (sum/length/colex) order are
A036037.
Reverse-lexicographically ordered partitions are
A080577.
Sorting reversed partitions by Heinz number gives
A112798.
Lexicographically ordered partitions are
A193073.
Sorting partitions by Heinz number gives
A296150.
Cf.
A124734,
A129129,
A211992,
A228100,
A333219,
A334301,
A334433,
A334434,
A334439,
A334441,
A334442.
-
Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,n,0,-1}]
A333483
Sort all positive integers, first by sum of prime indices (A056239), then by number of prime indices (A001222).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 14, 15, 18, 20, 24, 32, 13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64, 17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128, 19, 34, 39, 49, 55, 52, 63, 66, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 160, 192, 256, 23, 38, 51, 65, 77, 68, 78, 98, 99, 105, 110, 125, 104, 126, 132, 135, 140, 150, 162, 168, 176, 180, 200, 216, 224, 240, 288, 320, 384, 512
Offset: 0
Triangle begins:
1
2
3 4
5 6 8
7 9 10 12 16
11 14 15 18 20 24 32
13 21 22 25 27 28 30 36 40 48 64
17 26 33 35 42 44 45 50 54 56 60 72 80 96 128
Ignoring length gives
A215366 (graded Heinz numbers).
Sorting by decreasing length gives
A333484.
Finally sorting lexicographically by prime indices gives
A185974.
Finally sorting colexicographically by prime indices gives
A334433.
Finally sorting reverse-lexicographically by prime indices gives
A334435.
Finally sorting reverse-colexicographically by prime indices gives
A334438.
Number of prime indices is
A001222.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are
A036036.
Partitions in (sum/length/colex) order are
A036037.
Sorting reversed partitions by Heinz number gives
A112798.
Sorting partitions by Heinz number gives
A296150.
Cf.
A026791,
A124734,
A129129,
A193073,
A211992,
A228100,
A333219,
A334301,
A334434,
A334439,
A334441,
A334442.
-
Join@@@Table[Sort[Times@@Prime/@#&/@IntegerPartitions[n,{k}]],{n,0,8},{k,0,n}]
A344089
Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.
Original entry on oeis.org
1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (3)(12)
4: (4)(13)
5: (5)(23)(14)
6: (6)(24)(15)(123)
7: (7)(34)(25)(16)(124)
8: (8)(35)(26)(17)(134)(125)
9: (9)(45)(36)(27)(18)(234)(135)(126)
Positions of first appearances are
A015724 plus one.
Reversing all partitions gives
A344090.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]
A344085
Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
Grouping by greatest prime factor only gives
A339195.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A001793,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124.
-
nn=4;
GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]
Comments