cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 9 splits:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]

A336139 Number of ways to choose a strict composition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 5, 9, 17, 45, 81, 181, 397, 965, 1729, 3673, 7313, 15401, 34065, 68617, 135069, 266701, 556969, 1061921, 2434385, 4436157, 9120869, 17811665, 35651301, 68949549, 136796317, 283612973, 537616261, 1039994921, 2081261717, 3980842425, 7723253181, 15027216049
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 splittings:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (1),(2)  (1),(3)    (3,2)
            (2),(1)  (3),(1)    (4,1)
                     (1),(1,2)  (1),(4)
                     (1),(2,1)  (2),(3)
                     (1,2),(1)  (3),(2)
                     (2,1),(1)  (4),(1)
                                (1),(1,3)
                                (1,2),(2)
                                (1),(3,1)
                                (1,3),(1)
                                (2),(1,2)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

The version for partitions is A063834.
Row sums of A072574.
The version for non-strict compositions is A133494.
The version for strict partitions is A279785.
Multiset partitions of partitions are A001970.
Strict compositions are A032020.
Taking a composition of each part of a partition: A075900.
Taking a composition of each part of a strict partition: A304961.
Taking a strict composition of each part of a composition: A307068.
Splittings of partitions are A323583.
Compositions of parts of strict compositions are A336127.
Set partitions of strict compositions are A336140.

Programs

  • Mathematica
    strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}]

A307068 Expansion of 1/(1 - Sum_{k>=1} k!*x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)).

Original entry on oeis.org

1, 1, 2, 6, 14, 34, 88, 216, 532, 1322, 3290, 8142, 20192, 50080, 124144, 307878, 763474, 1893038, 4694060, 11639580, 28861736, 71567206, 177460750, 440037738, 1091134276, 2705618900, 6708953156, 16635775698, 41250705518, 102286806130, 253634237896, 628921097352, 1559496588628
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2019

Keywords

Comments

Invert transform of A032020.
Number of ways to choose a strict composition of each part of a composition of n. - Gus Wiseman, Jul 18 2020
The Invert transform T(a) of a sequence a is given by T(a)n = Sum_c Product_i a(c_i), where the sum is over all compositions c of n. - _Gus Wiseman, Aug 01 2020

Examples

			From _Gus Wiseman_, Jul 18 2020: (Start)
The a(1) = 1 through a(4) = 14 ways to choose a strict composition of each part of a composition:
    (1)  (2)      (3)          (4)
         (1),(1)  (1,2)        (1,3)
                  (2,1)        (3,1)
                  (1),(2)      (1),(3)
                  (2),(1)      (2),(2)
                  (1),(1),(1)  (3),(1)
                               (1),(1,2)
                               (1),(2,1)
                               (1,2),(1)
                               (2,1),(1)
                               (1),(1),(2)
                               (1),(2),(1)
                               (2),(1),(1)
                               (1),(1),(1),(1)
(End)
		

Crossrefs

The version for partitions is A270995.
Starting with a strict composition gives A336139.
Strict compositions are counted by A032020.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Compositions of each part of a composition are A133494.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict partitions of each part of a composition are A304969.
Compositions of each part of a strict composition are A336127.
Set partitions of strict compositions are A336140.
Strict compositions of each part of a partition are A336141.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(1 - (&+[Factorial(k)*x^Binomial(k+1,2)/(&*[ 1-x^j: j in [1..k]]): k in [1..m+2]]) ) )); // G. C. Greubel, Jan 25 2024
    
  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    g:= proc(n) option remember; add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)) end:
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 16 2022
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[k!*x^(k*(k+1)/2)/Product[ (1-x^j), {j,k}], {k,nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def p(x, j): return product(1-x^k for k in range(1,j+1))
    def f(x): return 1/(1 - sum(factorial(j)*x^binomial(j+1,2)/p(x,j) for j in range(1, m+3)) )
    def A307068_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307068_list(m) # G. C. Greubel, Jan 25 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A032020(k)*a(n-k).

A358907 Number of finite sequences of distinct integer compositions with total sum n.

Original entry on oeis.org

1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 18 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((12))     ((13))
                 ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((112))
                 ((2)(1))   ((121))
                 ((1)(11))  ((211))
                 ((11)(1))  ((1111))
                            ((1)(3))
                            ((3)(1))
                            ((1)(12))
                            ((11)(2))
                            ((1)(21))
                            ((12)(1))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

For sets instead of sequences we have A098407, partitions A261049.
This is the strict case of A133494.
The case of distinct sums is A336127, constant sums A074854.
The version for sequences of partitions is A358906.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Maple
    g:= proc(n) option remember; ceil(2^(n-1)) end:
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
          add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 15 2022
  • Mathematica
    comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
    Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]

Extensions

a(16)-a(29) from Alois P. Heinz, Dec 15 2022

A336343 Number of ways to choose a strict partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2020

Keywords

Comments

A strict composition of n (A032020) is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(5) = 11 ways:
  (1)  (2)  (3)      (4)        (5)
            (2,1)    (3,1)      (3,2)
            (1),(2)  (1),(3)    (4,1)
            (2),(1)  (3),(1)    (1),(4)
                     (1),(2,1)  (2),(3)
                     (2,1),(1)  (3),(2)
                                (4),(1)
                                (1),(3,1)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of strict partitions are A072706.
Set partitions of strict partitions are A294617.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
  • PARI
    \\ here Q(N) gives A000009 as a vector.
    Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
    seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000009(j)). - Andrew Howroyd, Apr 16 2021

A336141 Number of ways to choose a strict composition of each part of an integer partition of n.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 41, 71, 138, 270, 518, 938, 1863, 3323, 6163, 11436, 20883, 37413, 69257, 122784, 221873, 397258, 708142, 1249955, 2236499, 3917628, 6909676, 12130972, 21251742, 36973609, 64788378, 112103360, 194628113, 336713377, 581527210, 1000153063
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 ways:
  (1)  (2)      (3)          (4)              (5)
       (1),(1)  (1,2)        (1,3)            (1,4)
                (2,1)        (3,1)            (2,3)
                (2),(1)      (2),(2)          (3,2)
                (1),(1),(1)  (3),(1)          (4,1)
                             (1,2),(1)        (3),(2)
                             (2,1),(1)        (4),(1)
                             (2),(1),(1)      (1,2),(2)
                             (1),(1),(1),(1)  (1,3),(1)
                                              (2,1),(2)
                                              (3,1),(1)
                                              (2),(2),(1)
                                              (3),(1),(1)
                                              (1,2),(1),(1)
                                              (2,1),(1),(1)
                                              (2),(1),(1),(1)
                                              (1),(1),(1),(1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
    seq(a(n), n=0..38);  # Alois P. Heinz, Jul 31 2020
  • Mathematica
    Table[Length[Join@@Table[Tuples[Join@@Permutations/@Select[IntegerPartitions[#],UnsameQ@@#&]&/@ctn],{ctn,IntegerPartitions[n]}]],{n,0,10}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
         If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    g[n_, i_] := g[n, i] = If[n==0 || i==1, 1, g[n, i-1] +
         b[i, i, 0] g[n-i, Min[n-i, i]]];
    a[n_] := g[n, n];
    a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

G.f.: Product_{k >= 1} 1/(1 - A032020(k)*x^k).

A336133 Number of ways to split a strict integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 11, 14, 17, 22, 26, 35, 40, 51, 60, 75, 86, 109, 124, 153, 175, 214, 243, 297, 336, 403, 456, 546, 614, 731, 821, 975, 1095, 1283, 1437, 1689, 1887, 2195, 2448, 2851, 3172, 3676, 4083, 4724, 5245, 6022, 6677, 7695, 8504, 9720
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 9 splittings:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)    (5,2)    (6,2)    (6,3)
                                 (3,2,1)  (6,1)    (7,1)    (7,2)
                                          (4,2,1)  (4,3,1)  (8,1)
                                                   (5,2,1)  (4,3,2)
                                                            (5,3,1)
                                                            (6,2,1)
                                                            (4),(3,2)
The first splitting with more than two blocks is (8),(7,6),(5,4,3,2) under n = 35.
		

Crossrefs

The version with equal sums is A318683.
The version with strictly decreasing sums is A318684.
The version with weakly decreasing sums is A319794.
The version with different sums is A336132.
Starting with a composition gives A304961.
Starting with a non-strict partition gives A336134.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

A336142 Number of ways to choose a strict composition of each part of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 22, 41, 72, 142, 260, 454, 769, 1416, 2472, 4465, 7708, 13314, 23630, 40406, 68196, 119646, 203237, 343242, 586508, 993764, 1677187, 2824072, 4753066, 7934268, 13355658, 22229194, 36945828, 61555136, 102019156, 168474033, 279181966
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 11 ways:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (2),(1)  (3),(1)    (3,2)
                     (1,2),(1)  (4,1)
                     (2,1),(1)  (3),(2)
                                (4),(1)
                                (1,2),(2)
                                (1,3),(1)
                                (2,1),(2)
                                (3,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
    seq(a(n), n=0..38);  # Alois P. Heinz, Jul 31 2020
  • Mathematica
    strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[Join@@Permutations/@strptn[#]&/@ctn],{ctn,strptn[n]}]],{n,0,20}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
         If[n == 0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0,
         If[n == 0, 1, g[n, i-1] + b[i, i, 0]*g[n-i, Min[n-i, i-1]]]];
    a[n_] := g[n, n];
    a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

G.f.: Product_{k >= 1} (1 + A032020(k)*x^k).

A358904 Number of finite sets of compositions with all equal sums and total sum n.

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 38, 64, 156, 260, 632, 1024, 2601, 4096, 10208, 16944, 40966, 65536, 168672, 262144, 656980, 1090240, 2620928, 4194304, 10862100, 16781584, 41940992, 69872384, 168403448, 268435456, 693528552, 1073741824, 2695006177, 4473400320, 10737385472
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 9 sets:
  {(1)}  {(2)}   {(3)}    {(4)}
         {(11)}  {(12)}   {(13)}
                 {(21)}   {(22)}
                 {(111)}  {(31)}
                          {(112)}
                          {(121)}
                          {(211)}
                          {(1111)}
                          {(2),(11)}
		

Crossrefs

This is the constant-sum case of A098407, ordered A358907.
The version for distinct sums is A304961, ordered A336127.
Allowing repetition gives A305552, ordered A074854.
The case of sets of partitions is A359041.
A001970 counts multisets of partitions.
A034691 counts multisets of compositions, ordered A133494.
A261049 counts sets of partitions, ordered A358906.

Programs

  • Mathematica
    Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
  • PARI
    a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ Michel Marcus, Dec 14 2022

Formula

a(n>0) = Sum_{d|n} binomial(2^(d-1),n/d).

A355387 Number of ways to choose a distinct subsequence of an integer composition of n.

Original entry on oeis.org

1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192.

Examples

			The a(3) = 14 pairings of a composition with a chosen subsequence:
  (3)()     (3)(3)
  (21)()    (21)(1)   (21)(2)    (21)(21)
  (12)()    (12)(1)   (12)(2)    (12)(12)
  (111)()   (111)(1)  (111)(11)  (111)(111)
		

Crossrefs

For partitions we have A000712, composable A339006.
The homogeneous version is A011782, without containment A000302.
With multiplicity we have A025192, for partitions A070933.
The strict case is A032005.
The case of strict subsequences is A236002.
The composable case is A355384, homogeneous without containment A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
  • PARI
    lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025

Formula

G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - Christian Sievers, May 06 2025

Extensions

a(16) and beyond from Christian Sievers, May 06 2025
Previous Showing 11-20 of 20 results.