cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 4476 results. Next

A151541 Number of 2-sided triangular strip polyedges with n cells.

Original entry on oeis.org

1, 3, 8, 32, 123, 523, 2201, 9443, 40341, 172649, 736926, 3141607, 13367012, 56790498, 240919918, 1020753475, 4319803799, 18262494912, 77134873774, 325518862387, 1372679840360, 5784417772262
Offset: 1

Views

Author

Ed Pegg Jr, May 13 2009

Keywords

Comments

Also number of unrooted self-avoiding walks of n steps on hexagonal [ =triangular ] lattice. - Hugo Pfoertner, Jun 23 2018

Crossrefs

Asymptotically approaches (1/24)*A001334(n) for increasing n.

Extensions

a(9)-a(13) from Joseph Myers, Oct 05 2011
a(14)-a(22) from Bert Dobbelaere, Mar 23 2025

A152746 Six times hexagonal numbers: 6*n*(2*n-1).

Original entry on oeis.org

0, 6, 36, 90, 168, 270, 396, 546, 720, 918, 1140, 1386, 1656, 1950, 2268, 2610, 2976, 3366, 3780, 4218, 4680, 5166, 5676, 6210, 6768, 7350, 7956, 8586, 9240, 9918, 10620, 11346, 12096, 12870, 13668, 14490, 15336, 16206, 17100
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 18 2011
a(n) is the number of walks on a cubic lattice of n dimensions that return to the origin, not necessarily for the first time, after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Programs

  • Magma
    [6*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    6*PolygonalNumber[6,Range[0,40]] (* The program uses the PolygonalNumber function from Mathematica version 10 *) (* Harvey P. Dale, Mar 04 2016 *)
    LinearRecurrence[{3,-3,1}, {0,6,36}, 50] (* or *) Table[6*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=6*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 12*n^2 - 6*n = A000384(n)*6 = A002939(n)*3 = A094159(n)*2.
a(n) = a(n-1) + 24*n - 18 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 6*x*(1+3*x)/(1-x)^3.
E.g.f.: 6*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Mar 30 2023: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/12 - log(2)/6. (End)

A276852 Number of positive walks with n steps {-3,-2,-1,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.

Original entry on oeis.org

0, 1, 2, 7, 28, 121, 560, 2677, 13230, 66742, 343092, 1788681, 9439870, 50321865, 270594896, 1465941763, 7993664588, 43839212778, 241650560756, 1338084935826, 7439615051328, 41516113036777, 232452845782308, 1305500166481715, 7352433083806020, 41514430735834714
Offset: 0

Views

Author

Michael Wallner, Sep 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    walks[n_, k_, h_] = 0;
    walks[1, k_, h_] := Boole[0 < k <= h];
    walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k - x, h], {x, h}] + Sum[walks[n - 1, k + x, h], {x, h}];
    (* walks represents the number of positive walks with n steps {-h, -h+1, ... -1, 1, ..., h} that end at altitude k *)
    A276852[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)

A001184 Number of simple Hamiltonian paths connecting opposite corners of a 2n+1 X 2n+1 grid.

Original entry on oeis.org

1, 2, 104, 111712, 2688307514, 1445778936756068, 17337631013706758184626, 4628650743368437273677525554148, 27478778338807945303765092195103685118924
Offset: 0

Views

Author

Don Knuth, Dec 07 1995

Keywords

Crossrefs

Formula

a(n) = A121788(2n), n>0. - Ashutosh Mehra, Dec 19 2008

Extensions

a(7)-a(8) copied from A121788 by Alois P. Heinz, Sep 27 2014

A010575 Number of n-step self-avoiding walks on 4-d cubic lattice.

Original entry on oeis.org

1, 8, 56, 392, 2696, 18584, 127160, 871256, 5946200, 40613816, 276750536, 1886784200, 12843449288, 87456597656, 594876193016, 4047352264616, 27514497698984, 187083712725224, 1271271096363128, 8639846411760440, 58689235680164600, 398715967140863864
Offset: 0

Views

Author

Keywords

Comments

The computation for n=16 took 11.5 days CPU time on a 500MHz Digital Alphastation. The asymptotic behavior lim n->infinity a(n)/mu^n=const is discussed in the MathWorld link. The Pfoertner link provides an illustration of the asymptotic behavior indicating that the connective constant mu is in the range [6.79,6.80]. - Hugo Pfoertner, Dec 14 2002
Computation of the new term a(17) took 16.5 days CPU time on a 1.5GHz Intel Itanium 2 processor. - Hugo Pfoertner, Oct 19 2004

Crossrefs

Programs

  • Fortran
    c A "brute force" Fortran program to count the 4D walks is available at the Pfoertner link.

Formula

a(n) = 8*A366925(n) for n >= 1. - Hugo Pfoertner, Nov 03 2023

Extensions

a(12)-a(16) from Hugo Pfoertner, Dec 14 2002
a(17) from Hugo Pfoertner, Oct 19 2004
a(18) onwards from R. J. Mathar using data from Clisby et al, Aug 31 2007

A038373 Number of n-step self-avoiding paths on quadrant grid starting at quadrant origin.

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 146, 366, 912, 2302, 5800, 14722, 37368, 95304, 243168, 622518, 1594622, 4094768, 10521384, 27085436, 69768478, 179982688, 464564220, 1200563864, 3104192722, 8034256412, 20803994184, 53915334890, 139785953076, 362681515714, 941361260956, 2444866458524, 6351963691964
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2 * A046170(n) for n >= 1. - Siqi Wang, Jul 15 2022

Extensions

a(25)-a(32) from Bert Dobbelaere, Jan 05 2019

A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 38, 38, 16, 1, 1, 32, 125, 184, 125, 32, 1, 1, 64, 414, 976, 976, 414, 64, 1, 1, 128, 1369, 5382, 8512, 5382, 1369, 128, 1, 1, 256, 4522, 29739, 79384, 79384, 29739, 4522, 256, 1, 1, 512, 14934, 163496, 752061, 1262816, 752061, 163496, 14934, 512, 1
Offset: 1

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			The start of the sequence as table:
* 1  1    1     1      1        1         1 ...
* 1  2    4     8     16       32        64 ...
* 1  4   12    38    125      414      1369 ...
* 1  8   38   184    976     5382     29739 ...
* 1 16  125   976   8512    79384    752061 ...
* 1 32  414  5382  79384  1262816  20562673 ...
* 1 64 1369 29739 752061 20562673 575780564 ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

Crossrefs

A064297 together with its transpose.
Rows and columns include A000012, A000079, A006192, A007786, A007787, A145403, A333812.
Main diagonal is A007764.
Cf. A271465.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A064298(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, k * n
        paths = GraphSet.paths(start, goal)
        return paths.len()
    print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)])  # Seiichi Manyama, Apr 06 2020

A077482 Number of self-avoiding walks on square lattice trapped after n steps.

Original entry on oeis.org

1, 2, 11, 25, 95, 228, 752, 1860, 5741, 14477, 42939, 109758, 317147, 818229, 2322512, 6030293, 16900541, 44079555, 122379267, 320227677, 882687730, 2315257359, 6346076015, 16675422679, 45502168379, 119728011251, 325510252108, 857400725204
Offset: 7

Views

Author

Hugo Pfoertner, Nov 07 2002

Keywords

Comments

Only 1/8 of all possible walks is counted by selecting the first step in +x direction and requiring the first step changing y to be positive.

Examples

			a(7) = 1 because there is only 1 self-trapping walk with 7 steps: (0,0)(1,0)(1,1)(1,2)(0,2)(-1,2)(-1,1)(0,1); a(8) = 2 because there are 2 self-trapping walks with 8 steps: (0,0)(1,0)(2,0)(2,1)(2,2)(1,2)(0,2)(0,1)(1,1) and (0,0)(1,0)(1,1)(2,1)(3,1)(3,0)(3,-1)(2,-1)(2,0).
		

References

  • See references given for A001411.

Crossrefs

Programs

  • Fortran
    c See Hugo Pfoertner link.

Extensions

a(26)-a(28) from Alois P. Heinz, Jun 16 2011
a(29)-a(34) from Bert Dobbelaere, Jan 03 2019

A163529 The Y-coordinate of the n-th point in the Peano curve A163334.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

There is a 2-state automaton that accepts exactly those pairs (n,a(n)) where n is represented in base 9 and a(n) in base 3; see accompanying file a163529.pdf. - Jeffrey Shallit, Aug 10 2023

Crossrefs

Formula

a(n) = A002262(A163335(n)) = A025581(A163337(n)) = A163326(A163332(n)).

Extensions

Name corrected by Kevin Ryde, Aug 28 2020

A335570 Number A(n,k) of n-step k-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 6, 1, 1, 1, 5, 13, 17, 10, 1, 1, 1, 6, 21, 40, 47, 20, 1, 1, 1, 7, 31, 81, 136, 125, 35, 1, 1, 1, 8, 43, 146, 325, 496, 333, 70, 1, 1, 1, 9, 57, 241, 686, 1433, 1753, 939, 126, 1, 1, 1, 10, 73, 372, 1315, 3476, 6473, 6256, 2597, 252, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 26 2021

Keywords

Examples

			A(2,2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)].
Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,      1, ...
  1,  1,   1,    1,    1,     1,     1,      1, ...
  1,  2,   3,    4,    5,     6,     7,      8, ...
  1,  3,   7,   13,   21,    31,    43,     57, ...
  1,  6,  17,   40,   81,   146,   241,    372, ...
  1, 10,  47,  136,  325,   686,  1315,   2332, ...
  1, 20, 125,  496, 1433,  3476,  7525,  14960, ...
  1, 35, 333, 1753, 6473, 18711, 46165, 102173, ...
  ...
		

Crossrefs

Rows n=0+1,2-3 give: A000012, A000027(k+1), A002061(k+1).
Main diagonal gives A335588.
Cf. A340591.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add(
         `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l)))
        end:
    A:= (n, k)-> b(n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]];
    A[n_, k_] := b[n, Table[0, {k}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)

Formula

A(n,k) == 1 (mod k) for k >= 2.
Previous Showing 51-60 of 4476 results. Next