cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A195320 7 times hexagonal numbers: a(n) = 7*n*(2*n-1).

Original entry on oeis.org

0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0

Views

Author

Omar E. Pol, Sep 18 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277.
Also sequence found by reading the same line (mentioned above) in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 7*n = 7*A000384(n).
G.f.: -7*x*(1+3*x)/(x-1)^3. - R. J. Mathar, Sep 27 2011
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 7*exp(x)*x*(2*x + 1).
a(n) = A316466(n) - n = A024966(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A207024 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 18, 169, 252, 168, 100, 12, 25, 324, 624, 558, 270, 144, 14, 34, 625, 1350, 1586, 1035, 396, 196, 16, 46, 1156, 3025, 3726, 3315, 1719, 546, 256, 18, 62, 2116, 6256, 9450, 8280, 6123, 2646, 720, 324, 20, 83, 3844
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Table starts
..2...4...6....9....13....18.....25.....34......46......62.......83......111
..4..16..36...81...169...324....625...1156....2116....3844.....6889....12321
..6..36..90..252...624..1350...3025...6256...12788...25792....50630....99012
..8..64.168..558..1586..3726...9450..21318...47518..104470...220531...464202
.10.100.270.1035..3315..8280..23400..56814..136114..322834...725005..1627260
.12.144.396.1719..6123.16038..49925.129302..329498..836938..1984447..4716834
.14.196.546.2646.10374.28224..95900.263228..707756.1914436..4765030.11929281
.16.256.720.3852.16484.46260.170300.492932.1389476.3984244.10362550.27202659

Examples

			Some solutions for n=4, k=3
..1..0..0....0..1..0....0..0..1....1..0..1....0..0..1....1..1..0....1..1..1
..1..0..0....1..1..0....1..1..1....0..0..1....0..0..1....1..0..1....1..1..1
..1..0..0....1..1..0....0..0..1....0..0..1....0..0..1....1..0..1....0..1..0
..1..0..0....1..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..1..0
		

Crossrefs

Column 2 is A016742.
Column 3 is A152746.
Row 1 is A171861(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 6*n^3 + (27/2)*n^2 - (21/2)*n
k=5: a(n) = (13/6)*n^4 + 13*n^3 + (52/3)*n^2 - (39/2)*n
k=6: a(n) = (33/4)*n^4 + (45/2)*n^3 + (75/4)*n^2 - (63/2)*n
k=7: a(n) = (55/24)*n^5 + (75/4)*n^4 + (275/8)*n^3 + (75/4)*n^2 - (295/6)*n

A207169 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 19, 169, 261, 168, 100, 12, 28, 361, 624, 603, 270, 144, 14, 41, 784, 1482, 1612, 1161, 396, 196, 16, 60, 1681, 3808, 3952, 3445, 1989, 546, 256, 18, 88, 3600, 9512, 11452, 8455, 6513, 3141, 720, 324, 20, 129, 7744
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
..2...4...6....9....13....19.....28.....41......60......88......129......189
..4..16..36...81...169...361....784...1681....3600....7744....16641....35721
..6..36..90..261...624..1482...3808...9512...23280...58080...144996...359100
..8..64.168..603..1612..3952..11452..32021...84300..231616...641775..1736910
.10.100.270.1161..3445..8455..26908..82861..228060..672760..2029041..5846337
.12.144.396.1989..6513.15789..54208.182081..515760.1608288..5222049.15774129
.14.196.546.3141.11284.26866..98224.357356.1032000.3365824.11680176.36617616
.16.256.720.4671.18304.42712.164668.645217.1888380.6392320.23581071.76187790

Examples

			Some solutions for n=4 k=3
..1..0..0....0..0..1....0..1..1....1..1..1....0..0..1....1..0..0....1..0..0
..1..0..0....0..1..1....0..0..1....1..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
		

Crossrefs

Column 2 is A016742
Column 3 is A152746
Row 1 is A000930(n+3)

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 9*n^3 + 9*n - 9
k=5: a(n) = (13/4)*n^4 + (13/2)*n^3 + (117/4)*n^2 - 26*n
k=6: a(n) = (19/4)*n^4 + (95/2)*n^3 - (57/4)*n^2 - 19*n
k=7: a(n) = 35*n^4 + 42*n^3 + 7*n^2 - 84*n + 28
Empirical for rows:
n=1: a(k)=a(k-1)+a(k-3) for k>4
n=2: a(k)=a(k-1)+a(k-2)+3*a(k-3)+a(k-4)-a(k-5)-a(k-6) for k>7
n=3: a(k)=a(k-1)+9*a(k-3)+2*a(k-4)+2*a(k-5)-12*a(k-6)-8*a(k-7)+8*a(k-9) for k>11
n=4: a(k)=a(k-1)+13*a(k-3)+3*a(k-4)+3*a(k-5)-27*a(k-6)-18*a(k-7)+27*a(k-9) for k>11
n=5: a(k)=a(k-1)+17*a(k-3)+4*a(k-4)+4*a(k-5)-48*a(k-6)-32*a(k-7)+64*a(k-9) for k>11
n=6: a(k)=a(k-1)+21*a(k-3)+5*a(k-4)+5*a(k-5)-75*a(k-6)-50*a(k-7)+125*a(k-9) for k>11
n=7: a(k)=a(k-1)+25*a(k-3)+6*a(k-4)+6*a(k-5)-108*a(k-6)-72*a(k-7)+216*a(k-9) for k>11
n=8: a(k)=a(k-1)+29*a(k-3)+7*a(k-4)+7*a(k-5)-147*a(k-6)-98*a(k-7)+343*a(k-9) for k>11
n=9: a(k)=a(k-1)+33*a(k-3)+8*a(k-4)+8*a(k-5)-192*a(k-6)-128*a(k-7)+512*a(k-9) for k>11
n=10: a(k)=a(k-1)+37*a(k-3)+9*a(k-4)+9*a(k-5)-243*a(k-6)-162*a(k-7)+729*a(k-9) for k>11
n=11: a(k)=a(k-1)+41*a(k-3)+10*a(k-4)+10*a(k-5)-300*a(k-6)-200*a(k-7)+1000*a(k-9) for k>11
n=12: a(k)=a(k-1)+45*a(k-3)+11*a(k-4)+11*a(k-5)-363*a(k-6)-242*a(k-7)+1331*a(k-9) for k>11
n=13: a(k)=a(k-1)+49*a(k-3)+12*a(k-4)+12*a(k-5)-432*a(k-6)-288*a(k-7)+1728*a(k-9) for k>11
n=14: a(k)=a(k-1)+53*a(k-3)+13*a(k-4)+13*a(k-5)-507*a(k-6)-338*a(k-7)+2197*a(k-9) for k>11
n=15: a(k)=a(k-1)+57*a(k-3)+14*a(k-4)+14*a(k-5)-588*a(k-6)-392*a(k-7)+2744*a(k-9) for k>11
apparently a(k)=a(k-1)+(4*n-3)*a(k-3)+(n-1)*a(k-4)+(n-1)*a(k-5)-3*(n-1)^2*a(k-6)-2*(n-1)^2*a(k-7)+(n-1)^3*a(k-9) for n>2 and k>11

A207453 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 90, 64, 10, 26, 256, 330, 168, 100, 12, 42, 676, 1008, 760, 270, 144, 14, 68, 1764, 3354, 2560, 1450, 396, 196, 16, 110, 4624, 10710, 10088, 5200, 2460, 546, 256, 18, 178, 12100, 34884, 36456, 23530, 9216, 3850, 720
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Table starts
..2...4...6...10....16.....26.....42......68......110......178.......288
..4..16..36..100...256....676...1764....4624....12100....31684.....82944
..6..36..90..330..1008...3354..10710...34884...112530...364722...1179360
..8..64.168..760..2560..10088..36456..138176...509960..1910296...7096320
.10.100.270.1450..5200..23530..92610..396100..1610950..6754210..27799200
.12.144.396.2460..9216..46956.196812..932688..4086060.18819228..83939328
.14.196.546.3850.14896..84266.370734.1922564..8935850.44655394.212625504
.16.256.720.5680.22528.139984.640080.3599104.17556880.94358512.474439680

Examples

			Some solutions for n=5, k=3
..1..0..1....1..1..0....1..1..1....0..1..1....0..1..0....0..1..0....0..1..1
..1..0..1....1..0..0....0..1..1....0..1..1....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
..1..0..0....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
		

Crossrefs

Column 2 is A016742.
Column 3 is A152746.
Row 1 is A006355(n+2).
Row 2 is A206981.

Formula

Empirical for column k:
k=1: a(n) = 2*n;
k=2: a(n) = 4*n^2;
k=3: a(n) = 12*n^2 - 6*n;
k=4: a(n) = 10*n^3 + 10*n^2 - 10*n;
k=5: a(n) = 48*n^3 - 32*n^2;
k=6: a(n) = 26*n^4 + 78*n^3 - 104*n^2 + 26*n;
k=7: a(n) = 168*n^4 - 84*n^3 - 84*n^2 + 42*n;
k=8: a(n) = 68*n^5 + 408*n^4 - 612*n^3 + 204*n^2;
k=9: a(n) = 550*n^5 - 990*n^3 + 660*n^2 - 110*n;
k=10: a(n) = 178*n^6 + 1780*n^5 - 2670*n^4 + 534*n^3 + 534*n^2 - 178*n;
k=11: a(n) = 1728*n^6 + 1440*n^5 - 6912*n^4 + 5184*n^3 - 1152*n^2;
k=12: a(n) = 466*n^7 + 6990*n^6 - 9320*n^5 - 2796*n^4 + 8388*n^3 - 3728*n^2 + 466*n;
k=13: a(n) = 5278*n^7 + 10556*n^6 - 36946*n^5 + 27144*n^4 - 3016*n^3 - 3016*n^2 + 754*n;
k=14: a(n) = 1220*n^8 + 25620*n^7 - 25620*n^6 - 42700*n^5 + 73200*n^4 - 36600*n^3 + 6100*n^2;
k=15: a(n) = 15792*n^8 + 55272*n^7 - 165816*n^6 + 98700*n^5 + 39480*n^4 - 59220*n^3 + 19740*n^2 - 1974*n.
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2);
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3);
n=3: a(k)=a(k-1)+7*a(k-2)+2*a(k-3)-4*a(k-4);
n=4: a(k)=a(k-1)+10*a(k-2)+3*a(k-3)-9*a(k-4);
n=5: a(k)=a(k-1)+13*a(k-2)+4*a(k-3)-16*a(k-4);
n=6: a(k)=a(k-1)+16*a(k-2)+5*a(k-3)-25*a(k-4);
n=7: a(k)=a(k-1)+19*a(k-2)+6*a(k-3)-36*a(k-4);
apparently for row n>2: a(k)=a(k-1)+(3*n-2)*a(k-2)+(n-1)*a(k-3)+(n-1)^2*a(k-4).

A207599 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 15, 81, 90, 64, 10, 25, 225, 225, 168, 100, 12, 40, 625, 825, 441, 270, 144, 14, 64, 1600, 3025, 1995, 729, 396, 196, 16, 104, 4096, 9240, 9025, 3915, 1089, 546, 256, 18, 169, 10816, 28224, 30400, 21025, 6765, 1521, 720, 324, 20, 273
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2...4...6....9....15.....25.....40......64......104......169.......273
..4..16..36...81...225....625...1600....4096....10816....28561.....74529
..6..36..90..225...825...3025...9240...28224....93912...312481....997815
..8..64.168..441..1995...9025..30400..102400...403520..1590121...5746377
.10.100.270..729..3915..21025..75400..270400..1223560..5536609..21791133
.12.144.396.1089..6765..42025.157440..589824..3005184.15311569..64177113
.14.196.546.1521.10725..75625.292600.1132096..6404216.36228361.159389139
.16.256.720.2025.15975.126025.499840.1982464.12318592.76545001.350003745

Examples

			Some solutions for n=4 k=3
..1..0..1....1..0..0....0..0..1....1..0..0....1..1..0....1..0..0....1..1..0
..1..1..0....0..0..1....0..0..1....0..1..1....1..0..1....1..0..0....0..1..1
..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1
..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1
		

Crossrefs

Column 2 is A016742.
Column 3 is A152746.
Column 4 is A016946(n-1).
Row 1 is A006498(n+2).
Row 2 is A189145(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 36*n^2 - 36*n + 9
k=5: a(n) = 30*n^3 + 15*n^2 - 45*n + 15
k=6: a(n) = 25*n^4 + 50*n^3 - 25*n^2 - 50*n + 25
k=7: a(n) = 120*n^4 + 40*n^3 - 200*n^2 + 80*n

A287318 Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Examples

			Arrays start:
  k\n| 0   1    2      3        4          5           6
  ---|---------------------------------------------------------
  k=0| 1,  0,   0,     0,       0,         0,            0, ... A000007
  k=1| 1,  2,   6,    20,      70,       252,          924, ... A000984
  k=2| 1,  4,  36,   400,    4900,     63504,       853776, ... A002894
  k=3| 1,  6,  90,  1860,   44730,   1172556,     32496156, ... A002896
  k=4| 1,  8, 168,  5120,  190120,   7939008,    357713664, ... A039699
  k=5| 1, 10, 270, 10900,  551950,  32232060,   2070891900, ... A287317
  k=6| 1, 12, 396, 19920, 1281420,  96807312,   8175770064, ... A356258
  k=7| 1, 14, 546, 32900, 2570050, 238935564,  25142196156, ...
  k=8| 1, 16, 720, 50560, 4649680, 514031616,  64941883776, ...
  k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
		

Crossrefs

Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5), A356258 (k=6).
Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).
Main diagonal gives A303503.
Cf. A287316.

Programs

  • Maple
    A287318_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287318_row(k, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]

Formula

A(n,k) = A287316(n,k) * binomial(2*n,n).

A152745 5 times hexagonal numbers: 5*n*(2*n-1).

Original entry on oeis.org

0, 5, 30, 75, 140, 225, 330, 455, 600, 765, 950, 1155, 1380, 1625, 1890, 2175, 2480, 2805, 3150, 3515, 3900, 4305, 4730, 5175, 5640, 6125, 6630, 7155, 7700, 8265, 8850, 9455, 10080, 10725, 11390, 12075, 12780, 13505, 14250, 15015
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 18 2011
Also sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is one of the four semi-diagonals of the spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Bisection of A028895.

Programs

  • Magma
    [5*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0, 5, 30}, 50] (* or *) Table[5*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=5*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 10*n^2 - 5*n = A000384(n)*5.
a(n) = a(n-1) + 20*n-15 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 5*x*(1+ 3*x)/(1-x)^3.
E.g.f.: 5*x*(1+2*x)*exp(x). (End)
From Vaclav Kotesovec, Sep 02 2018: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/5.
Sum_{n>=1} (-1)^n/a(n) = log(2)/5 - Pi/10. (End)

A154105 a(n) = 12*n^2 + 18*n + 7.

Original entry on oeis.org

7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010
Sequence found by reading the line from 7, in the direction 7, 37, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Examples

			a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.
a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.
a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
		

Crossrefs

Programs

Formula

G.f.: (7 + 16*x + x^2)/(1-x)^3.
a(n) = 6*A014106(n) + 7.
a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.
a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011
E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018
a(n) = A003215(n) + 6*A000290(n+1) + 6*A000217(n). - Leo Tavares, Sep 12 2022

A259752 a(n) = 24*n - 18.

Original entry on oeis.org

6, 30, 54, 78, 102, 126, 150, 174, 198, 222, 246, 270, 294, 318, 342, 366, 390, 414, 438, 462, 486, 510, 534, 558, 582, 606, 630, 654, 678, 702, 726, 750, 774, 798, 822, 846, 870, 894, 918, 942, 966, 990, 1014, 1038, 1062, 1086, 1110, 1134, 1158, 1182, 1206
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 6.
Partial sums give A152746. - Leo Tavares, Jul 29 2023

Crossrefs

Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259751, A259754, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,  n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/6 & ]

Formula

A259748(a(n))/a(n) = 1/6.
a(n) = 6*A016813(n-1). - Michel Marcus, Jul 18 2015
G.f.: 6*x*(3*x+1)/(x-1)^2. - Alois P. Heinz, Jul 29 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*(exp(x)*(4*x - 3) + 3).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A143698 12 times hexagonal numbers: 12*n*(2*n-1).

Original entry on oeis.org

0, 12, 72, 180, 336, 540, 792, 1092, 1440, 1836, 2280, 2772, 3312, 3900, 4536, 5220, 5952, 6732, 7560, 8436, 9360, 10332, 11352, 12420, 13536, 14700, 15912, 17172, 18480, 19836, 21240, 22692, 24192, 25740, 27336, 28980, 30672, 32412
Offset: 0

Views

Author

Omar E. Pol, Jan 23 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 12,..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. - Omar E. Pol, Oct 02 2011

Crossrefs

Programs

Formula

a(n) = 24*n^2 - 12*n = 12*A000384(n) = 6*A002939(n) = 4*A094159(n) = 3*A085250(n) = 2*A152746(n).
a(n) = a(n-1) + 48*n - 36, with a(0)=0. - Vincenzo Librandi, Dec 14 2010
From G. C. Greubel, May 30 2021: (Start)
G.f.: 12*x*(1 + 3*x)/(1-x)^3.
E.g.f.: 12*x*(1 + 2*x)*exp(x). (End)
Showing 1-10 of 14 results. Next