A195320
7 times hexagonal numbers: a(n) = 7*n*(2*n-1).
Original entry on oeis.org
0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0
A207024
T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 18, 169, 252, 168, 100, 12, 25, 324, 624, 558, 270, 144, 14, 34, 625, 1350, 1586, 1035, 396, 196, 16, 46, 1156, 3025, 3726, 3315, 1719, 546, 256, 18, 62, 2116, 6256, 9450, 8280, 6123, 2646, 720, 324, 20, 83, 3844
Offset: 1
Some solutions for n=4, k=3
..1..0..0....0..1..0....0..0..1....1..0..1....0..0..1....1..1..0....1..1..1
..1..0..0....1..1..0....1..1..1....0..0..1....0..0..1....1..0..1....1..1..1
..1..0..0....1..1..0....0..0..1....0..0..1....0..0..1....1..0..1....0..1..0
..1..0..0....1..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..1..0
A207169
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 19, 169, 261, 168, 100, 12, 28, 361, 624, 603, 270, 144, 14, 41, 784, 1482, 1612, 1161, 396, 196, 16, 60, 1681, 3808, 3952, 3445, 1989, 546, 256, 18, 88, 3600, 9512, 11452, 8455, 6513, 3141, 720, 324, 20, 129, 7744
Offset: 1
Some solutions for n=4 k=3
..1..0..0....0..0..1....0..1..1....1..1..1....0..0..1....1..0..0....1..0..0
..1..0..0....0..1..1....0..0..1....1..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
A207453
T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 90, 64, 10, 26, 256, 330, 168, 100, 12, 42, 676, 1008, 760, 270, 144, 14, 68, 1764, 3354, 2560, 1450, 396, 196, 16, 110, 4624, 10710, 10088, 5200, 2460, 546, 256, 18, 178, 12100, 34884, 36456, 23530, 9216, 3850, 720
Offset: 1
Some solutions for n=5, k=3
..1..0..1....1..1..0....1..1..1....0..1..1....0..1..0....0..1..0....0..1..1
..1..0..1....1..0..0....0..1..1....0..1..1....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
..1..0..0....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
A207599
T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 15, 81, 90, 64, 10, 25, 225, 225, 168, 100, 12, 40, 625, 825, 441, 270, 144, 14, 64, 1600, 3025, 1995, 729, 396, 196, 16, 104, 4096, 9240, 9025, 3915, 1089, 546, 256, 18, 169, 10816, 28224, 30400, 21025, 6765, 1521, 720, 324, 20, 273
Offset: 1
Some solutions for n=4 k=3
..1..0..1....1..0..0....0..0..1....1..0..0....1..1..0....1..0..0....1..1..0
..1..1..0....0..0..1....0..0..1....0..1..1....1..0..1....1..0..0....0..1..1
..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1
..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1
A287318
Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
-
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
-
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
A152745
5 times hexagonal numbers: 5*n*(2*n-1).
Original entry on oeis.org
0, 5, 30, 75, 140, 225, 330, 455, 600, 765, 950, 1155, 1380, 1625, 1890, 2175, 2480, 2805, 3150, 3515, 3900, 4305, 4730, 5175, 5640, 6125, 6630, 7155, 7700, 8265, 8850, 9455, 10080, 10725, 11390, 12075, 12780, 13505, 14250, 15015
Offset: 0
-
[5*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
-
LinearRecurrence[{3,-3,1}, {0, 5, 30}, 50] (* or *) Table[5*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
-
a(n)=5*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
A154105
a(n) = 12*n^2 + 18*n + 7.
Original entry on oeis.org
7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0
a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.
a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.
a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
-
[ 12*n^2+18*n+7: n in [0..40] ];
-
Table[12*n^2 + 18*n + 7, {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
LinearRecurrence[{3,-3,1}, {7,37,91}, 25] (* G. C. Greubel, Sep 02 2016 *)
-
a(n)=12*n^2+18*n+7 \\ Charles R Greathouse IV, Sep 02 2016
A259752
a(n) = 24*n - 18.
Original entry on oeis.org
6, 30, 54, 78, 102, 126, 150, 174, 198, 222, 246, 270, 294, 318, 342, 366, 390, 414, 438, 462, 486, 510, 534, 558, 582, 606, 630, 654, 678, 702, 726, 750, 774, 798, 822, 846, 870, 894, 918, 942, 966, 990, 1014, 1038, 1062, 1086, 1110, 1134, 1158, 1182, 1206
Offset: 1
-
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/6 & ]
A143698
12 times hexagonal numbers: 12*n*(2*n-1).
Original entry on oeis.org
0, 12, 72, 180, 336, 540, 792, 1092, 1440, 1836, 2280, 2772, 3312, 3900, 4536, 5220, 5952, 6732, 7560, 8436, 9360, 10332, 11352, 12420, 13536, 14700, 15912, 17172, 18480, 19836, 21240, 22692, 24192, 25740, 27336, 28980, 30672, 32412
Offset: 0
-
seq(12*n*(2*n-1), n=0..40); # G. C. Greubel, May 30 2021
-
Table[24n^2-12n,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,12,72},40] (* Harvey P. Dale, Sep 24 2015 *)
-
a(n)=24*n^2-12*n \\ Charles R Greathouse IV, Jun 17 2017
-
[12*n*(2*n-1) for n in (0..40)] # G. C. Greubel, May 30 2021
Showing 1-10 of 14 results.
Comments