cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A092919 Partial sums of A000193 (round(log(n))).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Examples

			a(1) = round(log(1)).
a(2) = a(1) + round(log(2)).
a(3) = a(2) + round(log(3)).
...
		

Crossrefs

A137271 Numbers n such that pi(n^2)=pi((n-k)^2)+n, where k=A000193(n).

Original entry on oeis.org

2, 5, 14, 17, 18, 43, 44, 54, 107, 121, 137, 144, 417, 424, 868, 990, 991, 1094, 2529, 2586, 2740, 2741, 2785, 2878, 2948, 3085, 3176, 3267, 3269, 3346, 7319, 7694, 7750, 7868, 7984, 8061, 8161, 8250, 8308, 8340, 21182, 22190, 22801, 23200, 57448
Offset: 1

Views

Author

Manuel Valdivia, Mar 13 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Do[k=Round[Log[n]];If[PrimePi[n^2]==PrimePi[(n-k)^2]+n, Print[n]], {n,1,10^5,1}]

A000523 a(n) = floor(log_2(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Keywords

Comments

Or, n >= 0 appears 2^n times. - Jon Perry, Sep 21 2002
a(n) + 1 = number of bits in binary expansion of n.
Largest power of 2 dividing lcm(1..n): A007814(A003418(n)).
log_2(0) = -infinity.
Also Max_{k=1..n} Omega(k), where Omega(n) = A001222(n), number of prime factors with repetition; see A080613. - Reinhard Zumkeller, Feb 25 2003
From Paul Weisenhorn, Sep 29 2010, updated Aug 11 2020: (Start)
Arithmetic mean: m(1,(c+1)/c) = (2*c+1)/(2*c); harmonic mean: h(1,(c+1)/c) = 2*(c+1)/(2*c+1);
a(n) is the number of means to reach (n+1)/n from 2/1; with m for 0 and h for 1, the inverse binary expansion of n, without the leading 1, gives the sequence of means.
For example, n=20; inverse binary expansion without the leading 1: 0010 ---> m m h m or m(1, m(1, h(1, m(1, 2)))) = 21/20.
The 4 twofold means for n from 4 to 7:
m(1,m(1,2)) = m(1,3/2) = 5/4,
h(1,m(1,2)) = h(1,3/2) = 6/5,
m(1,h(1,2)) = m(1,4/3) = 7/6,
h(1,h(1,2)) = h(1,4/3) = 8/7. (End) [Edited by Petros Hadjicostas, Jul 23 2020]
As function of the absolute value, defines the minimal Euclidean function v on Z\{0}. A ring R is Euclidean if for some function v : R\{0}->N a division by nonzero b can be defined with remainder r satisfying either r=0 or v(r) < v(b). For the integers taking v(n)=|n| works, but v(n) = floor(log_2(|n|)) works as well; moreover it is the possibility with smallest possible values. For division by b>0 one can always choose |r| <= floor(b/2); this sequence satisfies a(1) = 0 and recursively a(n) = 1 + max(a(1), ..., a(floor(n/2))) for n > 1. - Marc A. A. van Leeuwen, Feb 16 2011
Maximum number of guesses required to find any k in a range of 1..n, with 'higher', 'lower' and 'correct' as answers. - Jon Perry, Nov 02 2013
Number of powers of 2 <= n. - Ralph-Joseph Tatt, Apr 23 2018
a(n) + 1 is the minimum number of pairwise disjoint subsets of an n-element set such that for each k from 1 to n there is a set with cardinality k which is the union of some of those subsets. - Wojciech Raszka, Apr 15 2019
Minimum height of an n-node binary tree. - Yuchun Ji, Mar 22 2021

Examples

			a(5)=2 because the binary expansion of 5 (=101) has three bits.
		

References

  • Rüdeger Baumann, Computer-Knobelei, LOG IN Heft 159 (2009), 74-77. - Paul Weisenhorn, Sep 29 2010
  • G. H. Hardy, Note on Dr. Vacca's series for gamma, Quart. J. Pure Appl. Math., Vol. 43 (1912), pp. 215-216.
  • Ernst Jacobsthal, Über die Eulersche konstante, Mathematisch-Naturwissenschaftliche Blätter, Vol. 3, No. 9 (1906), pp. 153-154.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, p. 400.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589. - From N. J. A. Sloane, Aug 03 2012

Crossrefs

Programs

  • Haskell
    a000523 1 = 0
    a000523 n = 1 + a000523 (div n 2)
    a000523_list = 0 : f [0] where
       f xs = ys ++ f ys where ys = map (+ 1) (xs ++ xs)
    -- Reinhard Zumkeller, Dec 31 2012, Feb 04 2012, Mar 18 2011
    
  • Magma
    [Ilog2(n) : n in [1..130] ];
    
  • Maple
    A000523 := proc(n)
        ilog2(n) ;
    end proc: # R. J. Mathar, Nov 28 2016
    seq(A000523(n), n=1..90);
  • Mathematica
    Floor[Log[2,Range[110]]] (* Harvey P. Dale, Jul 16 2012 *)
    a[ n_] := If[ n < 1, 0, BitLength[n] - 1]; (* Michael Somos, Jul 10 2018 *)
  • PARI
    {a(n) = floor(log(n) / log(2))} \\ Likely to yield incorrect results for many if not almost all n. Better use most recent code.
    
  • PARI
    {a(n) = if( n<1, 0, #binary(n) - 1)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    a(n)=logint(n,2) \\ Charles R Greathouse IV, Sep 01 2015
    
  • PARI
    a(n)=exponent(n) \\ Charles R Greathouse IV, Nov 09 2017
    
  • Python
    def A000523(n):
        return len(bin(n))-3 # Chai Wah Wu, Jul 09 2020
    
  • Python
    def a(n): return n.bit_length() - 1
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 18 2023

Formula

a(n) = A070939(n) - 1 for n >= 1.
a(n) = if n > 1, then a(floor(n / 2)) + 1; else 0. - Reinhard Zumkeller, Oct 29 2001
G.f.: (1/(1 - x)) * Sum_{k>=1} x^2^k. - Ralf Stephan, Apr 13 2002
a(n+1) = number of digits of n-th number with no 0 in ternary representation = A081604(A032924(n)); A107680(n) = A003462(a(n+1)). - Reinhard Zumkeller, May 20 2005
a(n) = A152487(n-1,0) = A152487(n,1). - Reinhard Zumkeller, Dec 06 2008
a(n) = k with 2^k <= n < 2^(k+1); a(n) = floor(log_2(n)). - Paul Weisenhorn, Sep 29 2010
a(n) = Max_{k=1..n} A240857(n,k). - Reinhard Zumkeller, Apr 14 2014
a(n) = A113473(n) - 1. - Filip Zaludek, Oct 29 2016
Sum_{n>=2} (-1)^n*a(n)/n = gamma = A001620 (Jacobsthal, 1906; Vacca, 1910). - Amiram Eldar, Jun 12 2021
a(n) = floor(Sum_{k=1..n-1} (n+1)^(n-2^k)) mod n. - Joseph M. Shunia, Jul 19 2024

Extensions

Error in 4th term, pointed out by Joe Keane (jgk(AT)jgk.org), has been corrected.
More terms from Michael Somos, Aug 02 2002

A029837 Binary order of n: log_2(n) rounded up to next integer.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Keywords

Comments

Or, ceiling(log_2(n)).
Worst-case cost of binary search.
Equal to number of binary digits in n unless n is a power of 2 when it is one less.
Thus a(n) gives the length of the binary representation of n - 1 (n >= 2), which is also A070939(n - 1).
Let x(0) = n > 1 and x(k + 1) = x(k) - floor(x(k)/2), then a(n) is the smallest integer such that x(a(n)) = 1. - Benoit Cloitre, Aug 29 2002
Also number of division steps when going from n to 1 by process of adding 1 if odd, or dividing by 2 if even. - Cino Hilliard, Mar 25 2003
Number of ways to write n as (x + 2^y), x >= 0. Number of ways to write n + 1 as 2^x + 3^y (cf. A004050). - Benoit Cloitre, Mar 29 2003
The minimum number of cuts for dividing an object into n (possibly unequal) pieces. - Karl Ove Hufthammer (karl(AT)huftis.org), Mar 29 2010
Partial sums of A209229; number of powers of 2 not greater than n. - Reinhard Zumkeller, Mar 07 2012

Examples

			a(1) = 0, since log_2(1) = 0.
a(2) = 1, since log_2(2) = 1.
a(3) = 2, since log_2(3) = 1.58...
a(n) = 7 for n = 65, 66, ..., 127, 128.
G.f. = x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 4*x^9 + ... - _Michael Somos_, Jun 02 2019
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, p. 70.
  • G. J. E. Rawlins, Compared to What? An Introduction to the Analysis of Algorithms, W. H. Freeman, 1992; see pp. 108, 118.

Crossrefs

Partial sums of A036987.
Used for several definitions: A029827, A036378-A036390. Partial sums: A001855.

Programs

  • Haskell
    a029837 n = a029837_list !! (n-1)
    a029837_list = scanl1 (+) a209229_list
    -- Reinhard Zumkeller, Mar 07 2012
    (Common Lisp) (defun A029837 (n) (integer-length (1- n))) ; James Spahlinger, Oct 15 2012
    
  • Magma
    [Ceiling(Log(2, n)): n in [1..100]]; // Vincenzo Librandi, Jun 14 2019
    
  • Maple
    a:= n-> (p-> p+`if`(2^pAlois P. Heinz, Mar 18 2013
  • Mathematica
    a[n_] := Ceiling[Log[2, n]]; Array[a, 105] (* Robert G. Wilson v, Dec 09 2005 *)
    Table[IntegerLength[n - 1, 2], {n, 1, 105}] (* Peter Luschny, Dec 02 2017 *)
    a[n_] := If[n < 1, 0, BitLength[n - 1]]; (* Michael Somos, Jul 10 2018 *)
    Join[{0}, IntegerLength[Range[130], 2]] (* Vincenzo Librandi, Jun 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, ceil(log(n) / log(2)))};
    
  • PARI
    /* Set p = 1, then: */
    xpcount(n,p) = for(x=1, n, p1 = x; ct=0; while(p1>1, if(p1%2==0,p1/=2; ct++,p1 = p1*p+1)); print1(ct, ", "))
    
  • PARI
    {a(n) = if( n<2, 0, exponent(n-1)+1)}; /* Michael Somos, Jul 10 2018 */
    
  • Python
    def A029837(n):
        s = bin(n)[2:]
        return len(s) - (1 if s.count('1') == 1 else 0) # Chai Wah Wu, Jul 09 2020
    
  • Python
    def A029837(n): return (n-1).bit_length() # Chai Wah Wu, Jun 30 2022
  • Scala
    (1 to 80).map(n => Math.ceil(Math.log(n)/Math.log(2)).toInt) // Alonso del Arte, Feb 19 2020
    

Formula

a(n) = ceiling(log_2(n)).
a(1) = 0; for n > 1, a(2n) = a(n) + 1, a(2n + 1) = a(n) + 1. Alternatively, a(1) = 0; for n > 1, a(n) = a(ceiling(n/2)) + 1. [corrected by Ilya Gutkovskiy, Mar 21 2020]
a(n) = k such that n^(1/k - 1) > 2 > n^(1/k), or the least value of k for which floor n^(1/k) = 1. a(n) = k for all n such that 2^(k - 1) < n < 2^k. - Amarnath Murthy, May 06 2001
G.f.: x/(1 - x) * Sum_{k >= 0} x^2^k. - Ralf Stephan, Apr 13 2002
A062383(n-1) = 2^a(n). - Johannes W. Meijer, Jul 06 2009
a(n+1) = -Sum_{k = 1..n} mu(2*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n+1) = A113473(n). - Michael Somos, Jun 02 2019

Extensions

Additional comments from Daniele Parisse
More terms from Michael Somos, Aug 02 2002

A000195 a(n) = floor(log(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Keywords

Comments

Equals A004233(n) - 1 for n > 1.
Does not satisfy Benford's law [Whyman et al., 2016] - N. J. A. Sloane, Feb 12 2017

Crossrefs

Cf. A000193 (nearest integer to log(n)), A004233.
Cf. A000523.

Programs

  • Haskell
    a000195 = floor . log . fromIntegral  -- Reinhard Zumkeller, Mar 17 2015
  • Maple
    Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];
  • Mathematica
    Floor@ Log@ Range@ 105 (* Michael De Vlieger, Aug 21 2017 *)
  • PARI
    a(n)=floor(log(n))
    

Formula

Conjecture: a(n) = floor(3*n^2*(n^(1/(3*n^2))-1)), checked for n <= 10^6. - Joseph M. Shunia, Aug 02 2024

A004233 a(n) = ceiling(log(n)).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Keywords

Comments

Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

Crossrefs

Programs

A092755 Partial sums of A000195 (floor(log(n))).

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Examples

			a(1) = floor(log(1)).
a(2) = a(1) + floor(log(2)).
a(3) = a(2) + floor(log(3)).
...
		

Crossrefs

A345328 a(n) is the smallest integer k>1 such that |log(k)-round(log(k))| is smaller than 10^(-n).

Original entry on oeis.org

3, 20, 1096, 2981, 59874, 442413, 8886110, 65659969, 178482301, 3584912846, 26489122130, 195729609429, 3931334297144, 78962960182680, 214643579785916, 4311231547115195, 31855931757113756, 86593400423993747, 12851600114359308275, 34934271057485095348
Offset: 1

Views

Author

Andrzej Kukla, Jun 14 2021

Keywords

Comments

In other words, a(n) is the smallest integer k>1 such that the distance between log(k) and nearest integer to log(k) is smaller than 10^(-n).

Examples

			For n=4 a(n)=2981, because 2981 is the smallest integer greater than 1 such that |log(2981)-round(2981)| = 0.00001409... < 10^(-4).
		

Crossrefs

Programs

  • Maple
    n := 1: for i from 2 to 10^10 do if abs(evalf(log(i)) - floor(log(i) + 1/2)) < 10^(-n) then print(i); n := n + 1 fi end do;
  • PARI
    \\ suitable precision needed.
    a(n)={my(epsilon=1.0/10^n); for(k=1, oo, my(t=floor(exp(k))); if(k-log(t)Andrew Howroyd, Jun 14 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jun 14 2021

A309398 a(n) is the nearest integer to log(log(10^n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Felix Fröhlich, Sep 27 2019

Keywords

Comments

The sequence grows relatively slowly. For example, for n < 10^7, a(n) <= 17.
a(n) is roughly the expected number of Wieferich primes (cf. A001220 and Knauer, Richstein, 2005, p. 1560) as well as the expected number of Fibonacci-Wieferich primes (Wall-Sun-Sun primes) (cf. McIntosh, Roettger, 2007, p. 2091) and Wolstenholme primes (cf. A088164 and McIntosh, 1995, p. 387) with at most n digits. It is also roughly the expected number of Wilson primes with at most n digits (cf. A007540 and Costa, Gerbicz, Harvey, 2014).

Crossrefs

Programs

  • Mathematica
    Round[Log[Log[10^Range[90]]]] (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    a(n) = round(log(log(10^n)))

Formula

a(n) = round(log(log(10^n))) = log n + O(1).
Showing 1-9 of 9 results.