A000246 Number of permutations in the symmetric group S_n that have odd order.
1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325, 18261468225, 273922023375, 4108830350625, 69850115960625, 1187451971330625, 22561587455281875, 428670161650355625, 9002073394657468125, 189043541287806830625
Offset: 0
Examples
For the Wallis numerators, denominators and partial products see A001900. - _Wolfdieter Lang_, Dec 06 2017
References
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- Ron M. Adin, Pál Hegedűs, and Yuval Roichman, Descent set distribution for permutations with cycles of only odd or only even lengths, arXiv:2502.03507 [math.CO], 2025. See p. 2.
- Joel Barnes, Conformal welding of uniform random trees, Ph. D. Dissertation, Univ. Washington, 2014.
- Olivier Bernardi, Bertrand Duplantier and Philippe Nadeau, A Bijection Between Well-Labelled Positive Paths and Matchings, Séminaire Lotharingien de Combinatoire (2010), volume 63, Article B63e.
- William Y. C. Chen, Breaking Cycles, the Odd Versus the Even, 2023.
- A. Edelman and M. La Croix, The Singular Values of the GUE (Less is More), arXiv preprint arXiv:1410.7065 [math.PR], 2014-2015. See Table 1.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- A. Ghitza and A. McAndrew, Experimental evidence for Maeda's conjecture on modular forms, arXiv preprint arXiv:1207.3480 [math.NT], 2012.
- Y. Cha, Closed form solutions of difference equations (2011) PhD Thesis, Florida State University, page 24
- Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
- Zhicong Lin, David G.L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021.
- Kenneth M. Monks, An Elementary Proof of the Explicit Formula for the Möbius Number of the Odd Partition Poset, J. Int. Seq., Vol. 21 (2018), Article 18.9.6.
- Julia A. Palacios, Anand Bhaskar, Filippo Disanto, and Noah A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
- Qingchun Ren, Ordered Partitions and Drawings of Rooted Plane Trees, arXiv preprint arXiv:1301.6327 [math.CO], 2013. See Lemma 15.
- Marko Riedel, et al. From combinatorial class to recurrence to closed form, Mathematics Stack Exchange.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
- Sam Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv:1810.00993 [math.CO], 2018.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 108.
- Allen Wang, Permutations with Up-Down Signatures of Nonnegative Partial Sums, MIT PRIMES Conference (2018).
- David G. L. Wang and T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
- Index entries for sequences related to groups
Crossrefs
Programs
-
Haskell
a000246 n = a000246_list !! n a000246_list = 1 : 1 : zipWith (+) (tail a000246_list) (zipWith (*) a000246_list a002378_list) -- Reinhard Zumkeller, Feb 27 2012
-
Magma
I:=[1,1]; [n le 2 select I[n] else Self(n-1)+(n^2-5*n+6)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2015
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, a(n-1) +(n-1)*(n-2)*a(n-2)) end: seq(a(n), n=0..25); # Alois P. Heinz, May 14 2018
-
Mathematica
a[n_] := a[n] = a[n-1]*(n+Mod[n, 2]-1); a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 21 2011, after Pari *) a[n_] := a[n] = (n-2)*(n-3)*a[n-2] + a[n-1]; a[0] := 0; a[1] := 1; Table[a[i], {i, 0, 20}] (* or *) RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n-2)*(n-3)a[n-2]+a[n-1]}, a, {n, 20}] (* G. C. Greubel, May 01 2015 *) CoefficientList[Series[Sqrt[(1+x)/(1-x)], {x, 0, 20}], x]*Table[k!, {k, 0, 20}] (* Stefano Spezia, Oct 07 2018 *)
-
PARI
a(n)=if(n<1,!n,a(n-1)*(n+n%2-1))
-
PARI
Vec( serlaplace( sqrt( (1+x)/(1-x) + O(x^55) ) ) )
-
PARI
a(n)=prod(k=3,n,k+k%2-1) \\ Charles R Greathouse IV, May 01 2015
-
PARI
a(n)=(n!/(n\2)!>>(n\2))^2/if(n%2,n,1) \\ Charles R Greathouse IV, May 01 2015
Formula
E.g.f.: sqrt(1-x^2)/(1-x) = sqrt((1+x)/(1-x)).
a(2*k) = (2*k-1)*a(2*k-1), a(2*k+1) = (2*k+1)*a(2*k), for k >= 0, with a(0) = 1.
Let b(1)=0, b(2)=1, b(k+2)=b(k+1)/k + b(k); then a(n+1) = n!*b(n+2). - Benoit Cloitre, Sep 03 2002
a(n) = Sum_{k=0..floor((n-1)/2)} (2k)! * C(n-1, 2k) * a(n-2k-1) for n > 0. - Noam Katz (noamkj(AT)hotmail.com), Feb 27 2001
Also successive denominators of Wallis's approximation to Pi/2 (unreduced): 1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * .., for n >= 1.
D-finite with recurrence: a(n) = a(n-1) + (n-1)*(n-2)*a(n-2). - Benoit Cloitre, Aug 30 2003
a(n) is asymptotic to (n-1)!*sqrt(2*n/Pi). - Benoit Cloitre, Jan 19 2004
a(n) = n! * binomial(n-1, floor((n-1)/2)) / 2^(n-1), n > 0. - Ralf Stephan, Mar 22 2004
E.g.f.: e^atanh(x), a(n) = n!*Sum_{m=1..n} Sum_{k=m..n} 2^(k-m)*Stirling1(k,m) *binomial(n-1,k-1)/k!, n > 0, a(0)=1. - Vladimir Kruchinin, Dec 12 2011
G.f.: G(0) where G(k) = 1 + x*(4*k-1)/((2*k+1)*(x-1) - x*(x-1)*(2*k+1)*(4*k+1)/(x*(4*k+1) + 2*(x-1)*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 24 2012
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+1)/(1-x/(x - 1/(1 - (2*k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: G(0), where G(k) = 1 + x*(2*k+1)/(1 - x*(2*k+1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
For n >= 1, a(2*n) = (2*n-1)!!^2, a(2*n+1) = (2*n+1)*(2*n-1)!!^2. - Vladimir Shevelev, Dec 01 2013
E.g.f.: arcsin(x) - sqrt(1-x^2) + 1 for a(0) = 0, a(1) = a(2) = a(3) = 1. - G. C. Greubel, May 01 2015
Sum_{n>1} 1/a(n) = (L_0(1) + L_1(1))*Pi/2, where L is the modified Struve function. - Peter McNair, Mar 11 2022
From Peter Bala, Mar 29 2024: (Start)
a(n) = n! * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(-1/2, n-k).
a(n) = (1/4^n) * (2*n)!/n! * hypergeom([-1/2, -n], [1/2 - n], -1).
a(n) = n!/2^n * A063886(n). (End)
Comments