A000396 Perfect numbers k: k is equal to the sum of the proper divisors of k.
6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1
Examples
6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
- Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
- Euclid, Elements, Book IX, Section 36, about 300 BC.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
- T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
- Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
- József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
- Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
- André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.
Links
- E-Hern Lee, Table of n, a(n) for n = 1..15 (terms 1-14 from David Wasserman)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Anonymous, Perfect Numbers. [broken link]
- Anonymous, Timetable of discovery of perfect numbers. [broken link]
- Antal Bege and Kinga Fogarasi, Generalized perfect numbers, arXiv:1008.0155 [math.NT], 2010.
- Chris Bispels, Matthew Cohen, Joshua Harrington, Joshua Lowrance, Kaelyn Pontes, Leif Schaumann, and Tony W. H. Wong, A further investigation on covering systems with odd moduli, arXiv:2507.16135 [math.NT], 2025. See p. 3.
- Richard P. Brent and Graeme L. Cohen, A new lower bound for odd perfect numbers, Math. Comp., Vol. 53, No. 187 (1989), pp. 431-437, S7; alternative link.
- Richard P. Brent, Graeme L. Cohen and Herman J. J. te Riele, A new approach to lower bounds for odd perfect numbers, Report TR-CS-88-08, CSL, ANU, August 1988, 71 pp.
- Richard P. Brent, Graeme L. Cohen and Herman J. J. te Riele, Improved Techniques For Lower Bounds For Odd Perfect Numbers, Math. Comp., Vol. 57, No. 196 (1991), pp. 857-868.
- J. Britton, Perfect Number Analyser.
- Chris K. Caldwell, Perfect number.
- Chris K. Caldwell, Mersenne Primes, etc.
- Chris K. Caldwell, Iterated sums of the digits of a perfect number converge to 1.
- Jose Arnaldo B. Dris, The Abundancy Index of Divisors of Odd Perfect Numbers, J. Int. Seq., Vol. 15 (2012) Article # 12.4.4.
- Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal, Vol. 14, No. 1 (2004), p. 243.
- Roger B. Eggleston, Equisum Partitions of Sets of Positive Integers, Algorithms, Vol. 12, No. 8 (2019), Article 164.
- Leonhard Euler, De numeris amicibilibus>, Commentationes arithmeticae collectae, Vol. 2 (1849), pp. 627-636. Written in 1747.
- Bakir Farhi, On the representation of an even perfect number as the sum of a limited number of cubes, arXiv:1504.07322 [math.NT], 2015.
- Steven Finch, Amicable Pairs and Aliquot Sequences, 2013. [Cached copy, with permission of the author]
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.1.
- S. Flora Jeba, Anirban Roy, and Manjil P. Saikia, On k-Facile Perfect Numbers, Algebra and Its Applications (ICAA-2023) Springer Proc. Math. Stat., Vol. 474, 111-121. See p. 111.
- J. W. Gaberdiel, A Study of Perfect Numbers and Related Topics.
- Takeshi Goto and Yasuo Ohno, Largest prime factor of an odd perfect number, 2006.
- Kevin G. Hare, New techniques for bounds on the total number of prime factors of an odd perfect number, Math. Comp., Vol. 76, No. 260 (2007), pp. 2241-2248; arXiv preprint, arXiv:math/0501070 [math.NT], 2005-2006.
- Azizul Hoque and Himashree Kalita, Generalized perfect numbers connected with arithmetic functions, Math. Sci. Lett., Vol. 3, No. 3 (2014), pp. 249-253.
- C.-E. Jean, "Recreomath" Online Dictionary, Nombre parfait.
- Hans-Joachim Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Mathematische Zeitschrift, Vol. 61 (1954), pp. 180-185.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, The Ramanujan Journal, Vol. 46, No. 3 (2018), pp. 633-655; arXiv preprint, arXiv:1610.07793 [math.NT], 2016.
- Pedro Laborde, A Note on the Even Perfect Numbers, The American Mathematical Monthly, Vol. 62, No. 5 (May, 1955), pp. 348-349 (2 pages).
- Tom Leinster, Perfect numbers and groups, arXiv:math/0104012 [math.GR], 2001.
- A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev.
- Daniel Lustig, The algebraic independence of the sum of divisors functions, Journal of Number Theory, Volume 130, Issue 11 (November 2010), pp. 2628-2633.
- T. Masiwa, T. Shonhiwa & G. Hitchcock, Perfect Numbers & Mersenne Primes.
- Mathforum, Perfect Numbers.
- Mathforum, List of Perfect Numbers.
- Judson S. McCranie, A study of hyperperfect numbers, J. Int. Seqs., Vol. 3 (2000), Article #00.1.3.
- Gérard P. Michon, Perfect Numbers, Mersenne Primes.
- David Moews, Perfect, amicable and sociable numbers.
- Derek Muller, The Oldest Unsolved Problem in Math, Veritasium, YouTube video, 2024.
- Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Mathematics of Computation, Vol. 76, No. 260 (2007), pp. 2109-2126; arXiv preprint, arXiv:math/0602485 [math.NT], 2006.
- Walter Nissen, Abundancy : Some Resources , 2008-2010.
- J. J. O'Connor and E. F. Robertson, Perfect Numbers.
- J. O. M. Pedersen, Perfect numbers. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
- Ivars Peterson, Cubes of Perfection, MathTrek, 1998.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Paul Pollack, Quasi-Amicable Numbers are Rare, J. Int. Seq., Vol. 14 (2011), Article # 11.5.2.
- D. Romagnoli, Perfect Numbers (Text in Italian). [From _Lekraj Beedassy_, Jun 26 2009]
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 3.
- D. Scheffler and R. Ondrejka, The numerical evaluation of the eighteenth perfect number, Math. Comp., Vol. 14, No. 70 (1960), pp. 199-200.
- K. Schneider, perfect number, PlanetMath.org.
- Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240; arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
- G. Villemin's Almanach of Numbers, Nombres Parfaits.
- J. Voight, Perfect Numbers:An Elementary Introduction.
- Eric Weisstein's World of Mathematics, Perfect Number.
- Eric Weisstein's World of Mathematics, Odd Perfect Number.
- Eric Weisstein's World of Mathematics, Multiperfect Number.
- Eric Weisstein's World of Mathematics, Hyperperfect Number.
- Eric Weisstein's World of Mathematics, Abundance.
- Wikipedia, Perfect number.
- Tomohiro Yamada, On the divisibility of odd perfect numbers by a high power of a prime, arXiv:math/0511410 [math.NT], 2005-2007.
- Joshua Zelinsky, The Sum of the Reciprocals of the Prime Divisors of an Odd Perfect or Odd Primitive Non-deficient Number, Integers (2025) Vol. 25, Art. No. A59. See p. 1.
- Index entries for "core" sequences
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
See A000043 for the current state of knowledge about Mersenne primes.
Cf. A007539, A005820, A027687, A046060, A046061, A000668, A090748, A133033, A000217, A000384, A019279, A061652, A006516, A144912, A153800, A007593, A220290, A028499-A028502, A034916, A065549, A275496, A063752, A156552, A152921, A324201.
Cf. A228058 for Euler's criterion for odd terms.
Subsequence of following sequences: A005835, A006039, A007691, A023196, A043305, A065997, A083207, A109510, A118372, A216782, A246282, A263837, A294900, A333646, A334410, A335267, A336702, A341622, A342922, A344755, A352739, A357462, and (the even terms), of: A005153, A063752, A174973, A336547, A338520.
Cf. A001065.
Programs
-
Haskell
a000396 n = a000396_list !! (n-1) a000396_list = [x | x <- [1..], a000203 x == 2 * x] -- Reinhard Zumkeller, Jan 20 2012
-
Mathematica
Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *) PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
-
PARI
isA000396(n) = (sigma(n) == 2*n);
-
Python
from sympy import divisor_sigma def ok(n): return n > 0 and divisor_sigma(n) == 2*n print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022
Formula
The perfect number N = 2^(p-1)*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N) = N^p), since tau(N) = 2*p. - Lekraj Beedassy, Sep 21 2004
a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 28 2008
a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 23 2008
a(n) = Sum of the first A000668(n) positive integers, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n) = A000384(A061652(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 17 2008
From Reikku Kulon, Oct 14 2008: (Start)
A144912(2, a(n)) = 1;
A144912(4, a(n)) = -1 for n > 1;
A144912(8, a(n)) = 5 or -5 for all n except 2;
A144912(16, a(n)) = -4 or -13 for n > 1. (End)
a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 09 2009
Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - Lekraj Beedassy, May 02 2009
For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - Derek Orr, Sep 28 2013
a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - Daniel Poveda Parrilla, Aug 16 2016
a(n) = A156552(A324201(n)), assuming there are no odd perfect numbers. - Antti Karttunen, Mar 28 2019
a(n) = ((2^(A000043(n)))^3 - (2^(A000043(n)) - 1)^3 - 1)/6, assuming there are no odd perfect numbers. - Jules Beauchamp, Jun 06 2025
Extensions
I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. - N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by Harvey P. Dale, Jan 13 2025
Comments