A001220 Wieferich primes: primes p such that p^2 divides 2^(p-1) - 1.
1093, 3511
Offset: 1
References
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 28.
- Richard K. Guy, Unsolved Problems in Number Theory, A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 91.
- Yves Hellegouarch, "Invitation aux mathématiques de Fermat Wiles", Dunod, 2eme Edition, pp. 340-341.
- Pace Nielsen, Wieferich primes, heuristics, computations, Abstracts Amer. Math. Soc., 33 (#1, 20912), #1077-11-48.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 263.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 230-234.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 163.
Links
- Takashi Agoh, Karl Dilcher and Ladislav Skula, Fermat Quotients for Composite Moduli, Journal of Number Theory 66(1), 1997, 29-50.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 780.
- Alex Samuel Bamunoba, A note on Carlitz Wieferich primes, Journal of Number Theory, Vol. 174 (2017), pp. 343-357;
- N. G. W. H. Beeger, On a New Case of the Congruence 2^(p-1) == 1 (mod p^2), Messenger of Mathematics, Vol 51 (1922), pp. 149-150.
- Dongho Byeon, Class numbers, Iwasawa invariants and modular forms, Trends in Mathematics, Vol. 9, No. 1, (2006), pp. 25-29.
- Chris K. Caldwell, The Prime Glossary, Wieferich prime.
- Chris K. Caldwell, Prime-square Mersenne divisors are Wieferich.
- Denis Xavier Charles, On Wieferich Primes.
- Keith Conrad, The ring of integers in a radical extension.
- Richard Crandall, Karl Dilcher and Carl Pomerance, A search for Wieferich and Wilson primes, Mathematics of Computation, Vol. 66, No. 217 (1997), pp. 433-449; alternative link.
- Joe K. Crump, Joe's Number Theory Web, Weiferich Primes. (sic)
- John Blythe Dobson, A note on the two known Wieferich Primes, 2007-2015.
- John Blythe Dobson A Characterization of Wilson-Lerch Primes, Integers, Vol. 16 (2016), A51.
- John Blythe Dobson, On the special harmonic numbers H_floor(p/9) and H_floor(p/18) modulo p, arXiv:2302.02027 [math.NT], 2023.
- F. G. Dorais, WPSE - A Wieferich Prime Search Engine (A program to search Wieferich primes written by F. G. Dorais.) - _Felix Fröhlich_, Jul 13 2014
- François G. Dorais and Dominic W. Klyve, A Wieferich Prime Search up to 6.7*10^15, Journal of Integer Sequences, Vol. 14 (2011), Article 11.9.2.
- Bruno Dular, Cycles of Sums of Integers, arXiv:1905.01765 [math.NT], 2019.
- Will Edgington, Mersenne Page [from Internet Archive Wayback Machine].
- M. Goetz, WSS and WFS are suspended, PrimeGrid forum, Message 107809, May 11, 2017.
- Andrew Granville and K. Soundararajan, A binary additive problem of Erdős and the order of 2 mod p^2, Raman. J., Vol. 2 (1998) pp. 283-298
- Hester Graves and M. Ram Murty, The abc conjecture and non-Wieferich primes in arithmetic progressions, Journal of Number Theory, Vol. 133 (2013), pp. 1809-1813.
- René Gy, Extended Congruences for Harmonic Numbers, arXiv:1902.05258 [math.NT], 2019.
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (ps, pdf)
- Stanislav Jakubec, Connection between the Wieferich congruence and divisibility of h+, Acta Arithmetica, Vol. 71, No. 1 (1995), pp. 55-64.
- Stanislav Jakubec, On divisibility of the class number h+ of the real cyclotomic fields of prime degree l, Mathematics of Computation, Vol. 67, No. 221 (1998), pp. 369-398.
- Stanislav Jakubec, The Congruence for Gauss Period, Journal of Number Theory, Vol. 48, No. 1 (1994), pp. 36-45.
- Wells Johnson, On the nonvanishing of Fermat quotients (mod p), Journal f. die reine und angewandte Mathematik, Vol. 292, (1977), pp. 196-200.
- Jiří Klaška, A Simple Proof of Skula's Theorem on Prime Power Divisors of Mersenne Numbers, J. Int. Seq., Vol. 25 (2022), Article 22.4.3.
- Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
- Joshua Knauer and Jörg Richstein, The continuing search for Wieferich primes, Math. Comp., Vol. 74, No. 251 (2005), pp. 1559-1563.
- D. H. Lehmer, On Fermat's quotient, base two, Math. Comp., Vol. 36, No. 153 (1981), pp. 289-290.
- Richard J. McIntosh and Eric L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., Vol 76, No. 260 (2007), pp. 2087-2094.
- C. McLeman, PlanetMath.org, Wieferich prime.
- Waldemar Meissner, Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p = 1093, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin, Vol. 35 (1913), pp. 663-667. [Annotated scanned copy]
- Sihem Mesnager and Jean-Pierre Flori, A note on hyper-bent functions via Dillon-like exponents, IACR, Report 2012/033, 2012.
- Mishima Miwako and Koji Momihara, A new series of optimal tight conflict-avoiding codes of weight 3, Discrete Mathematics, Vol. 340, No. 4 (2017), pp. 617-629. See page 618.
- Alina Ostafe and Igor E. Shparlinski, Pseudorandomness and Dynamics of Fermat Quotients, arXiv:1001.1504 [math.NT], 2010.
- Christian Perfect, Integer sequence reviews on Numberphile (or vice versa), 2013.
- Reggie, Welcome to the Wieferich and Wall-Sun-Sun Prime Search, PrimeGrid forum, 2020.
- Reese Scott and Robert Styer, On p^x - q^y = c and related three term exponential Diophantine equations with prime bases, Journal of Number Theory, Vol. 105, No. 2 (2004), pp. 212-234.
- Vladimir Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich Primes, arXiv:0806.3412 [math.NT], 2008.
- Joseph Silverman, Wieferich's Criterion and the abc Conjecture, J. Number Th. 30 (1988) 226-237.
- Jonathan Sondow, Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771, arXiv:1110.3113 [math.NT], 2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101 (2014), pp. 243-255.
- Michel Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013.
- Michel Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013.
- Eric Weisstein's World of Mathematics, Wieferich Prime.
- Eric Weisstein's World of Mathematics, abc Conjecture.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- A. Wieferich, Zum letzten Fermat'schen Theorem, Journal für die reine und angewandte Mathematik, Vol. 136 (1909), pp. 293-302.
- Wikipedia, Wieferich prime.
- Paul Zimmermann, Records for Prime Numbers.
Crossrefs
Sequences "primes p such that p^2 divides X^(p-1)-1": A014127 (X=3), A123692 (X=5), A212583 (X=6), A123693 (X=7), A045616 (X=10), A111027 (X=12), A128667 (X=13), A234810 (X=14), A242741 (X=15), A128668 (X=17), A244260 (X=18), A090968 (X=19), A242982 (X=20), A298951 (X=22), A128669 (X=23), A306255 (X=26), A306256 (X=30).
Programs
-
GAP
Filtered([1..50000],p->IsPrime(p) and (2^(p-1)-1) mod p^2 =0); # Muniru A Asiru, Apr 03 2018
-
Haskell
import Data.List (elemIndices) a001220 n = a001220_list !! (n-1) a001220_list = map (a000040 . (+ 1)) $ elemIndices 1 a196202_list -- Reinhard Zumkeller, Sep 29 2011
-
Magma
[p : p in PrimesUpTo(310000) | IsZero((2^(p-1) - 1) mod (p^2))]; // Vincenzo Librandi, Jan 19 2019
-
Maple
wieferich := proc (n) local nsq, remain, bin, char: if (not isprime(n)) then RETURN("not prime") fi: nsq := n^2: remain := 2: bin := convert(convert(n-1, binary),string): remain := (remain * 2) mod nsq: bin := substring(bin,2..length(bin)): while (length(bin) > 1) do: char := substring(bin,1..1): if char = "1" then remain := (remain * 2) mod nsq fi: remain := (remain^2) mod nsq: bin := substring(bin,2..length(bin)): od: if (bin = "1") then remain := (remain * 2) mod nsq fi: if remain = 1 then RETURN ("Wieferich prime") fi: RETURN ("non-Wieferich prime"): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 01 2001
-
Mathematica
Select[Prime[Range[50000]],Divisible[2^(#-1)-1,#^2]&] (* Harvey P. Dale, Apr 23 2011 *) Select[Prime[Range[50000]],PowerMod[2,#-1,#^2]==1&] (* Harvey P. Dale, May 25 2016 *)
-
PARI
N=10^4; default(primelimit,N); forprime(n=2,N,if(Mod(2,n^2)^(n-1)==1,print1(n,", "))); \\ Joerg Arndt, May 01 2013
-
Python
from sympy import prime from gmpy2 import powmod A001220_list = [p for p in (prime(n) for n in range(1,10**7)) if powmod(2,p-1,p*p) == 1] # Chai Wah Wu, Dec 03 2014
Formula
(A178815(A000720(p))^(p-1) - 1) mod p^2 = A178900(n), where p = a(n). - Jonathan Sondow, Jun 29 2010
Odd primes p such that A002326((p^2-1)/2) = A002326((p-1)/2). See A182297. - Thomas Ordowski, Feb 04 2014
Comments