cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A001470 Number of degree-n permutations of order dividing 3.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 5769, 31041, 142011, 776601, 4874013, 27027729, 168369111, 1191911841, 7678566801, 53474964993, 418199988339, 3044269834281, 23364756531621, 199008751634001, 1605461415071823, 13428028220072049, 123280859122040601
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Column k=3 of A008307.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(x+x^3/3) ))); // G. C. Greubel, Sep 03 2023
    
  • Maple
    spec := [S, {S=Set(Union(Cycle(Z, card=1), Cycle(Z, card=3)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..25) # David Radcliffe, Aug 29 2025
  • Mathematica
    a[n_] := HypergeometricPFQ[{(1-n)/3, (2-n)/3, -n/3}, {}, -9]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 03 2011 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^3/3],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 12 2016 *)
  • Maxima
    a(n):=n!*sum(if mod(n-k,2)=0 then binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k! else 0,k,floor(n/3),n); /* Vladimir Kruchinin, Sep 07 2010 */
    
  • SageMath
    def A001470_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(x+x^3/3) ).egf_to_ogf().list()
    A001470_list(40) # G. C. Greubel, Sep 03 2023

Formula

a(n) = Sum_{j=0..floor(n/3)} n!/(j!*(n-3j)!*(3^j)) (the latter formula from Roger Cuculière).
E.g.f.: exp(x + (1/3)*x^3).
D-finite with recurrence: a(n) = a(n-1) + (n-1)*(n-2)*a(n-3). - Geoffrey Critzer, Feb 03 2009
a(n) = n!*Sum_{k=floor(n/3)..n, n - k == 0 (mod 2)} binomial(k,(3*k-n)/2)*(1/3)^((n-k)/2)/k!. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ n^(2*n/3)*exp(n^(1/3)-2*n/3)/sqrt(3) * (1 - 1/(6*n^(1/3)) + 25/(72*n^(2/3))). - Vaclav Kotesovec, Jul 28 2013

A053505 Number of degree-n permutations of order dividing 30.

Original entry on oeis.org

1, 1, 2, 6, 18, 90, 540, 3060, 20700, 145980, 1459800, 13854600, 140059800, 1514748600, 15869034000, 285268878000, 4109761962000, 59488383690000, 935767530036000, 13364309726748000, 240338216104020000, 4540941256642020000, 79739974380153240000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 5, 6, 10, 15, 30])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 5, 6, 10, 15, 30}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^5/5 +x^6/6 + x^10/10 +x^15/15 +x^30/30], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^3/3 +x^5/5 + x^6/6 +x^10/10 +x^15/15 +x^30/30) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

E.g.f.: exp(x + x^2/2 + x^3/3 + x^5/5 + x^6/6 + x^10/10 + x^15/15 + x^30/30).

A052501 Number of permutations sigma such that sigma^5=Id; degree-n permutations of order dividing 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 25, 145, 505, 1345, 3025, 78625, 809425, 4809025, 20787625, 72696625, 1961583625, 28478346625, 238536558625, 1425925698625, 6764765838625, 189239120970625, 3500701266525625, 37764092547420625, 288099608198025625
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) = a(n-1) + (1 + a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1..floor(n/p)} (n!/(j!*(n-p*j)!*(p^j))).
These are the telephone numbers T^(5)n of [Artioli et al., p. 7]. - _Eric M. Schmidt, Oct 12 2017

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=1),Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 30; CoefficientList[ Series[ Exp[x + x^5/5], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 15 2012, after e.g.f. *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^5/5) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^5/5), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^5/5).
a(n+5) = a(n+4) + (24 +50*n +35*n^2 +10*n^3 +n^4)*a(n), with a(0)= ... = a(4) = 1.
a(n) = a(n-1) + a(n-5)*(n-1)!/(n-5)!.
a(n) = Sum_{j = 0..floor(n/5)} n!/(5^j * j! * (n-5*j)!).
a(n) = A059593(n) + 1.

A001471 Number of degree-n permutations of order exactly 3.

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110, 1191911840, 7678566800, 53474964992, 418199988338, 3044269834280, 23364756531620, 199008751634000, 1605461415071822
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of non-symmetric permutation matrices A of dimension n such that A^2 is the transpose of A. - Torlach Rush, Jul 09 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3-n/3, 2/3-n/3, -n/3}, {}, -9] - 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2011 *)
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,c+(1+a)(n-1)(n-2)}; NestList[nxt,{3,0,0,0},25][[;;,2]] (* Harvey P. Dale, Mar 09 2024 *)
  • PARI
    a(n)=sum(j=1,n\3, n!/(j!*(n-3*j)!*(3^j))) \\ Charles R Greathouse IV, Jun 21 2017
    
  • PARI
    first(n)=my(v=vector(n+1)); for(i=3,n, v[i+1]=v[i] + (1+v[i-2])*(i-1)*(i-2)); v \\ Charles R Greathouse IV, Jul 10 2020
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

From Henry Bottomley, Jan 26 2001: (Start)
a(n) = a(n-1) + (1 + a(n-3))*(n-1)(n-2).
a(n) = Sum_{j=1..floor(n/3)} n!/(j!*(n-3*j)!*(3^j)).
a(n) = A001470(n) - 1. (End)
E.g.f.: exp(x + x^3/3) - exp(x).

A053496 Number of degree-n permutations of order dividing 6.

Original entry on oeis.org

1, 1, 2, 6, 18, 66, 396, 2052, 12636, 91548, 625176, 4673736, 43575192, 377205336, 3624289488, 38829340656, 397695226896, 4338579616272, 54018173703456, 641634784488288, 8208962893594656, 113809776294348576, 1526808627197721792, 21533423236302943296
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^3/3 +x^6/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 6])))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    a[n_] := a[n] = If[n<0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 6}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^6/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x+x^2/2+x^3/3+x^6/6) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x +x^2/2 +x^3/3 +x^6/6).
D-finite with recurrence a(n) -a(n-1) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jul 04 2023

A001473 Number of degree-n permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 6, 30, 180, 840, 5460, 30996, 209160, 1290960, 9753480, 69618120, 571627056, 4443697440, 40027718640, 346953934320, 3369416698080, 31421601510336, 328430320909920, 3331475969159520, 37124416523261760
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) -Exp(x+x^2/2) )); [0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    Rest@With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4] - Exp[x +x^2/2], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
  • PARI
    my(x=xx+O(xx^33)); concat([0,0,0], Vec(serlaplace(-exp(x+1/2*x^2) +exp(x+1/2*x^2+1/4*x^4)))) \\ Michel Marcus, Dec 12 2014
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4) - exp(x+x^2/2), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4) - exp(x + x^2/2).

Extensions

More terms from Vladeta Jovovic, Apr 14 2001

A061121 Number of degree-n permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 20, 240, 1470, 10640, 83160, 584640, 4496030, 42658440, 371762820, 3594871280, 38650622010, 396457108320, 4330689250160, 53963701424640, 641211774798510, 8205894865096280, 113786291585124060
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^2/2]-1)(Exp[x^3/3]-1)Exp[x],{x,0,nn}],x]//Rest  (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x)-exp(x+1/2*x^2)-exp(x+1/3*x^3)+exp(x+1/2*x^2+1/3*x^3+1/6*x^6).

A061128 Number of degree-n permutations of order exactly 30.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 120960, 2661120, 27941760, 536215680, 6901614720, 90084234240, 1540714855680, 33110649411840, 554845922991360, 8393918663370240, 141081442901118720, 2869353360741853440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - exp(x) + exp(x + 1/2*x^2) + exp(x + 1/3*x^3) + exp(x + 1/5*x^5) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) - exp(x + 1/3*x^3 + 1/5*x^5 + 1/15*x^15) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/5*x^5 + 1/6*x^6 + 1/10*x^10 + 1/15*x^15 + 1/30*x^30).

A008307 Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 3, 2, 1, 1, 26, 9, 4, 1, 1, 1, 76, 21, 16, 1, 2, 1, 1, 232, 81, 56, 1, 6, 1, 1, 1, 764, 351, 256, 25, 18, 1, 2, 1, 1, 2620, 1233, 1072, 145, 66, 1, 4, 1, 1, 1, 9496, 5769, 6224, 505, 396, 1, 16, 3, 2, 1, 1, 35696, 31041, 33616, 1345, 2052, 1, 56, 9, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Solutions to x^k = 1 in Symm_n (the symmetric group of degree n).

Examples

			Array begins:
  1,   1,    1,    1,    1,     1,    1,     1, ...
  1,   2,    1,    2,    1,     2,    1,     2, ...
  1,   4,    3,    4,    1,     6,    1,     4, ...
  1,  10,    9,   16,    1,    18,    1,    16, ...
  1,  26,   21,   56,   25,    66,    1,    56, ...
  1,  76,   81,  256,  145,   396,    1,   256, ...
  1, 232,  351, 1072,  505,  2052,  721,  1072, ...
  1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
  • J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.

Crossrefs

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k))))
        end:
    seq(seq(A(1+d-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 14 2013
    # alternative
    A008307 := proc(n,m)
        local x,d ;
        add(x^d/d, d=numtheory[divisors](m)) ;
        exp(%) ;
        coeftayl(%,x=0,n) ;
        %*n! ;
    end proc:
    seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[, ] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* Jean-François Alcover, Dec 12 2011, after given formula *)

Formula

T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).

Extensions

More terms from Vladeta Jovovic, Apr 13 2001

A005388 Number of degree-n permutations of order a power of 2.

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0

Views

Author

Keywords

Comments

Differs from A053503 first at n=32. - Alois P. Heinz, Feb 14 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    f:= func< x | Exp( (&+[x^(2^j)/2^j: j in [0..14]]) ) >;
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Nov 17 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..ilog2(n))))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    max = 23; CoefficientList[ Series[ Exp[ Sum[x^2^m/2^m, {m, 0, max}]], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Sep 10 2013 *)
  • SageMath
    def f(x): return exp(sum(x^(2^j)/2^j for j in range(15)))
    def A005388_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A005388_list(40) # G. C. Greubel, Nov 17 2022

Formula

E.g.f.: exp(Sum_{m>=0} x^(2^m)/2^m).
E.g.f.: 1/Product_{k>=1} (1 - x^(2*k-1))^(mu(2*k-1)/(2*k-1)), where mu() is the Moebius function. - Seiichi Manyama, Jul 06 2024
Showing 1-10 of 38 results. Next