A002057 Fourth convolution of Catalan numbers: a(n) = 4*binomial(2*n+3,n)/(n+4).
1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248, 32798844771700, 124680849918352
Offset: 0
Examples
From _Peter Bala_, Apr 14 2017: (Start) This sequence appears on the main diagonal of a generalized Catalan triangle. Construct a lower triangular array (T(n,k)), n,k >= 0 by placing the sequence [0,0,0,1,1,1,1,...] in the first column and then filling in the remaining entries in the array using the rule T(n,k) = T(n,k-1) + T(n-1,k). The resulting array begins n\k| 0 1 2 3 4 5 6 7 ... ---+------------------------------- 0 | 0 1 | 0 0 2 | 0 0 0 3 | 1 1 1 1 4 | 1 2 3 4 4 5 | 1 3 6 10 14 14 6 | 1 4 10 20 34 48 48 7 | 1 5 15 35 69 117 165 165 ... (see Tedford 2011; this is essentially the array C_4(n,k) in the notation of Lee and Oh). Compare with A279004. (End)
References
- Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_4(z).
- C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
- Robert Sedgewick and Phillipe Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 225.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Fung Lam, Table of n, a(n) for n = 0..1000 (first 100 terms were computed by T. D. Noe)
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Joerg Arndt, The a(3)=48 Young tableaux for shape [4,1,1,4].
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Julia E. Bergner, Cedric Harper, Ryan Keller, and Mathilde Rosi-Marshall, Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers, arXiv:1807.03005 [math.CO], 2018.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 9.
- A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014 (see page 4).
- Samuel Connolly, Zachary Gabor, and Anant Godbole, The location of the first ascent in a 123-avoiding permutation, arXiv:1401.2691 [math.CO], 2014.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995) pp. 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995) pp. 743-751. [Annotated scanned copy]
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 31.
- Harold M. Edwards, A Normal Form for Elliptic Curves, Bulletin of the A.M.S., Vol. 44, No. 3 (2007), pp. 393-422.
- Richard K. Guy, Letter to N. J. A. Sloane, May 1990
- Richard K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146. [Annotated scanned copy]
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart., Vol. 38, No. 5 (2000), pp. 408-419. See Eq.(3).
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Nik Lygeros and Olivier Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq., Vol. 13 (2010), Article 10.7.4.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- John Riordan, Letter to N. J. A. Sloane, Nov 10 1970.
- John Riordan, Letter of 04/11/74.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.
- L. W. Shapiro, A Catalan triangle, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]
- Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., Vol. 10 (2003), Article N5.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
- Steven J. Tedford, Combinatorial interpretations of convolutions of the Catalan numbers, Integers, Vol. 11 (2011), Article A3.
- Wen-Jin Woan, Lou Shapiro, and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, Vol. 104, No. 10 (1997), pp. 926-931.
Crossrefs
Programs
-
GAP
List([0..25],n->4*Binomial(2*n+3,n)/(n+4)); # Muniru A Asiru, Mar 05 2018
-
Magma
[4*Binomial(2*n+3,n)/(n+4): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
-
Maple
a := n -> 32*4^n*GAMMA(5/2+n)*(1+n)/(sqrt(Pi)*GAMMA(5+n)): seq(a(n),n=0..23); # Peter Luschny, Dec 14 2015 A002057List := proc(m) local A, P, n; A := [1]; P := [1,1,1]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]); A := [op(A), P[-1]] od; A end: A002057List(27); # Peter Luschny, Mar 26 2022
-
Mathematica
Table[Plus@@Flatten[Nest[ #/.a_Integer:> Range[0, a+1]&, {0}, n]], {n, 0, 10}] Table[4 Binomial[2n+3,n]/(n+4),{n,0,30}] (* or *) CoefficientList[ Series[ (1-Sqrt[1-4 x]+2 x (-2+Sqrt[1-4 x]+x))/(2 x^4),{x,0,30}],x] (* Harvey P. Dale, May 05 2011 *)
-
PARI
{a(n) = if( n<0, 0, n+=2; 2*binomial(2*n, n-2) / n)}; /* Michael Somos, Jul 31 2005 */
-
PARI
x='x+O('x^100); Vec((1-(1-4*x)^(1/2)+2*x*(-2+(1-4*x)^(1/2)+x))/(2*x^4)) \\ Altug Alkan, Dec 14 2015
-
SageMath
[2*(n+1)*catalan_number(n+2)/(n+4) for n in (0..30)] # G. C. Greubel, May 27 2022
Formula
G.f.: c(x)^4 with c(x) g.f. of A000108 (Catalan).
Row sums of A145596. Column 4 of A033184. By specializing the identities for the row polynomials given in A145596 we obtain the results a(n) = Sum_{k = 0..n} (-1)^k*binomial(n+1,k+1)*a(k)*4^(n-k) and a(n) = Sum_{k = 0..floor(n/2)} binomial(n+1,2*k+1) * Catalan(k+1) * 2^(n-2*k). From the latter identity we can derive the congruences a(2n+1) == 0 (mod 4) and a(2n) == Catalan(n+1) (mod 4). It follows that a(n) is odd if and only if n = (2^m - 4) for some m >= 2. - Peter Bala, Oct 14 2008
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=3, a(n-3) = (-1)^(n-3) * coeff(charpoly(A,x), x^3). - Milan Janjic, Jul 08 2010
G.f.: (1-sqrt(1-4*x) + 2*x*(-2+sqrt(1-4*x) + x))/(2*x^4). - Harvey P. Dale, May 05 2011
a(n+1) = A214292(2*n+4,n). - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence: (n+4)a(n) = 8*(2*n-1)*a(n-3) - 20*(n+1)*a(n-2) + 4*(2*n+5)*a(n-1). - Fung Lam, Jan 29 2014
D-finite with recurrence: (n+4)*a(n) - 2*(3*n+7)*a(n-1) + 4*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Jun 03 2014
Asymptotics: a(n) ~ 4^(n+3)/sqrt(4*Pi*n^3). - Fung Lam, Mar 31 2014
a(n) = 32*4^n*Gamma(5/2+n)*(1+n)/(sqrt(Pi)*Gamma(5+n)). - Peter Luschny, Dec 14 2015
a(n) = C(n+1) - 2*C(n) where C is Catalan number A000108. Yuchun Ji, Oct 18 2017 [Note: Offset is off by 2]
E.g.f.: d/dx ( 2*exp(2*x)*BesselI(2,2*x)/x ). - Ilya Gutkovskiy, Nov 01 2017
From Bradley Klee, Mar 05 2018: (Start)
With F(x) = 16/(1+sqrt(1-4*x))^4 g.f. of A002057, xi(x) = F(x/4)*(x/4)^2, K(16*x) = 2F1(1/2,1/2;1;16*x) g.f. of A002894, q(x) g.f. of A005797, and q'(x) g.f. of A274344:
K(x) = (1+sqrt(xi(x)))*K(xi(x)).
2*K(1-x) = (1+sqrt(xi(x)))*K(1-xi(x)).
q(x) = sqrt(q(xi(16*x)/16)) = q'(xi(16*x)/16)/sqrt(xi(16*x)/16). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4 + Pi/(18*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 183*log(phi)/(25*sqrt(5)) - 77/100, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^n*W(x) dx where W(x) = -x^(3/2)*(1 - x/2)*sqrt(4 - x)/Pi, defined on the open interval (0,4). - Karol A. Penson, Nov 13 2022
Comments