A002605 a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
Offset: 0
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 8, 29.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- M. Diepenbroek, M. Maus, and A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Dale Gerdemann Bird Flock, Youtube video, 2011.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 476
- D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (39), (41) and (45), lhs, m=2.
- D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See U_n.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Alan Prince, Counting parses, Rutgers Optimality Archive, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for Lucas sequences.
Crossrefs
First differences are given by A026150.
a(n) = A073387(n, 0), n>=0 (first column of triangle).
a(n) = A028860(n)/2 apart from the initial terms.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A080953, A052948, A080040, A028859, A030195, A106435, A108898, A125145, A265106, A265107, A265278, A270810, A293005, A293006, A293007.
Cf. A175289 (Pisano periods).
Cf. A002530.
Cf. A127864.
Programs
-
Haskell
a002605 n = a002605_list !! n a002605_list = 0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list)) -- Reinhard Zumkeller, Oct 15 2011
-
Magma
[Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
Magma
[n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008 a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2)); seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
-
Mathematica
Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *) a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *) Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *) nxt[{a_,b_}]:={b,2(a+b)}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
-
PARI
Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
A002605(n)=([2,2;1,0]^n)[2,1] \\ M. F. Hasler, Aug 06 2018
-
Sage
[lucas_number1(n,2,-2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
-
Sage
a = BinaryRecurrenceSequence(2,2) print([a(n) for n in (0..29)]) # Peter Luschny, Aug 29 2016
Formula
a(n) = (-I*sqrt(2))^(n-1)*U(n-1, I/sqrt(2)) where U(n, x) is the Chebyshev U-polynomial. - Wolfdieter Lang
G.f.: x/(1 - 2*x - 2*x^2).
From Paul Barry, Sep 17 2003: (Start)
E.g.f.: x*exp(x)*(sinh(sqrt(3)*x)/sqrt(3) + cosh(sqrt(3)*x)).
a(n) = (1 + sqrt(3))^(n-1)*(1/2 + sqrt(3)/6) + (1 - sqrt(3))^(n-1)*(1/2 - sqrt(3)/6), for n>0.
Binomial transform of 1, 1, 3, 3, 9, 9, ... Binomial transform is A079935. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n - k, k)*2^(n - k). - Paul Barry, Jul 13 2004
a(n) = Sum_{k=0..n} A112899(n,k). - Philippe Deléham, Nov 21 2007
a(n) = Sum_{k=0..n} A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = ((1 + sqrt(3))^n - (1 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = Sum_{k=0..n} binomial(n, 2*k + 1) * 3^k.
Binomial transform of expansion of sinh(sqrt(3)x)/sqrt(3) (0, 1, 0, 3, 0, 9, ...). E.g.f.: exp(x)*sinh(sqrt(3)*x)/sqrt(3). - Paul Barry, May 09 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)*sin(2*Pi*k/3)*(1 + 2*cos(Pi*k/6))^n, n >= 1. - Herbert Kociemba, Jun 02 2004
a(n+1) = ((3 + sqrt(3))*(1 + sqrt(3))^n + (3 - sqrt(3))*(1 - sqrt(3))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
Antidiagonals sums of A081577. - J. M. Bergot, Dec 15 2012
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 + 2*x)/(x*(4*k + 4 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = 2^(n - 1)*hypergeom([1 - n/2, (1 - n)/2], [1 - n], -2) for n >= 3. - Peter Luschny, Dec 16 2015
Sum_{k=0..n} a(k)*2^(n-k) = a(n+2)/2 - 2^n. - Greg Dresden, Feb 11 2022
a(n) = 2^floor(n/2) * A002530(n). - Gregory L. Simay, Sep 22 2022
From Peter Bala, May 08 2024: (Start)
G.f.: x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (k + 2*x + 1)/(1 + k*x) )
Also x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} (2*x)^n *( x*Product_{k = 1..n} (m*k + 2 - m + x)/(1 + 2*m*k*x) ) for arbitrary m (both series are telescoping). (End)
Extensions
Edited by N. J. A. Sloane, Apr 15 2009
Comments