A002997 Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.
561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721
Offset: 1
References
- N. G. W. H. Beeger, On composite numbers n for which a^n == 1 (mod n) for every a prime to n, Scripta Mathematica, Vol. 16 (1950), pp. 133-135.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publications, Inc. New York, 1966, Table 18, Page 44.
- David M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 142.
- CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 87.
- Richard K. Guy, Unsolved Problems in Number Theory, A13.
- Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.
- Paul Poulet, Tables des nombres composés vérifiant le théorème du Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), 8 (1938), 42-45.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22, 100-103.
- Wacław Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 51.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 145-146.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 561 at p. 157.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (from the Pinch web site mentioned below)
- W. R. Alford, Jon Grantham, Steven Hayman, and Andrew Shallue, Constructing Carmichael numbers through improved subset-product algorithms, Mathematics of Computation, Vol. 83, No. 286 (2014), pp. 899-915, arXiv preprint, arXiv:1203.6664v1 [math.NT], Mar 29 2012.
- W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722.
- W. R. Alford, A. Granville, and C. Pomerance (1994). "On the difficulty of finding reliable witnesses". Lecture Notes in Computer Science 877, 1994, pp. 1-16.
- François Arnault, Thesis.
- François Arnault, Constructing Carmichael numbers which are strong pseudoprimes to several bases, Journal of Symbolic Computation, vol. 20, no 2, Aug. 1995, pp. 151-161.
- François Arnault, Rabin-Miller primality test: Composite numbers which pass it, Mathematics of Computation, vol. 64, no 209, 1995, pp. 355-361.
- François Arnault, The Rabin-Monier theorem for Lucas pseudoprimes, Mathematics of Computation, vol. 66, no 218, April 1997, pp. 869-881.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 786.
- Eric Bach and Rex Fernando, Infinitely Many Carmichael Numbers for a Modified Miller-Rabin Prime Test, ISSAC '16: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, July 2016, pp. 47-54, arXiv preprint, arXiv:1512.00444 [math.NT], 2015.
- Sunghan Bae, Su Hu, and Min Sha, On the Carmichael rings, Carmichael ideals and Carmichael polynomials, arXiv:1809.05432 [math.NT], 2018.
- Jonathan Bayless and Paul Kinlaw, Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.4.
- Jens Bernheiden, Carmichael numbers (Text in German).
- John D. Brillhart, N. J. A. Sloane, and J. D. Swift, Correspondence, 1972.
- Ronald Joseph Burthe, Jr. Upper bounds for least witnesses and generating sets, Acta Arith. 80 (1997), no. 4, 311-326.
- C. K. Caldwell, The Prime Glossary, Carmichael number.
- R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910), 232-238.
- Keith Conrad, Carmichael numbers and Korselt's criterion, expository paper (2016), 1-3.
- K. A. Draziotis, V. Martidis, and S. Tiganourias, Product Subset Problem: Applications to number theory and cryptography, arXiv:2002.07095 [math.NT], 2020. See also Chapter 5, Analysis, Cryptography and Information Science, World Scientific (2023), p. 108.
- Harvey Dubner, Carmichael Numbers of the form (6m+1)(12m+1)(18m+1), Journal of Integer Sequences, Vol. 5 (2002) Article 02.2.1.
- James Emery, Number Theory, 2013. [Broken link]
- Paul Erdős, On the converse of Fermat's theorem, The American Mathematical Monthly, Vol. 56, No. 9 (1949), pp. 623-624; alternative link.
- Jan Feitsma and William Galway, Tables of pseudoprimes and related data.
- Pratibha Ghatage and Brian Scott, Exactly When is (a+b)^n == a^n + b^n (mod n)?, College Mathematics Journal, Vol. 36, No. 4 (Sep 2005), p. 322.
- Claude Goutier, Compressed text file carm10e22.7z containing all the Carmichael numbers up to 10^22. [Local copy, with permission. This is a very large file.]
- Andrew Granville, Papers on Carmichael numbers.
- Andrew Granville, Primality testing and Carmichael numbers, Notices Amer. Math. Soc., 39 (No. 7, 1992), 696-700.
- Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2002), no. 238, 883-908.
- Gerhard Jaeschke, The Carmichael numbers to 10^12, Math. Comp., Vol. 55, No. 191 (1990), pp. 383-389.
- Eugene Karolinsky and Dmytro Seliutin, Carmichael numbers for GL(m), arXiv:2001.10315 [math.NT], 2020.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Paul Kinlaw, The reciprocal sums of pseudoprimes and Carmichael numbers, Mathematics of Computation (2023).
- A. Korselt, G. Tarry, I. Franel, and G. Vacca, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), 142-144.
- Daniel Larsen, Bertrand's Postulate for Carmichael Numbers, arXiv:2111.06963 [math.NT], 2021.
- D. H. Lehmer, Errata for Poulet's table, Math. Comp., 25 (1971), 944-945. 25 944 1971.
- Max Lewis and Victor Scharaschkin, k-Lehmer and k-Carmichael Numbers, Integers, 16 (2016), #A80.
- Renaud Lifchitz, A generalization of the Korselt's criterion - Nested Carmichael numbers.
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Yoshio Mimura, Carmichael Numbers up to 10^12. [broken link, WayBackMachine]
- Math Reference Project, Carmichael Numbers.
- R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008.
- R. G. E. Pinch, Carmichael numbers up to 10^15, 10^16, 10^16 to 10^17, 10^17 to 10^18, 10^19, and 10^21.
- Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Math. Comp., Vol. 35, No. 151 (1980), pp. 1003-1026.
- Carl Pomerance and N. J. A. Sloane, Correspondence, 1991.
- Fred Richman, Primality testing with Fermat's little theorem.
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. - From _N. J. A. Sloane_, Feb 07 2013
- Václav Šimerka, Zbytky z arithmetické posloupnosti, (On the remainders of an arithmetic progression), Časopis pro pěstování matematiky a fysiky. 14 (1885), 221-225.
- Eric Weisstein's World of Mathematics, Carmichael Number, Knoedel Numbers, and Pseudoprime.
- Wikipedia, Carmichael number.
- Thomas Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bulletin of the London Mathematical Society, 45 (2013) 943-952, arXiv preprint, arXiv:1212.5850 [math.NT], Dec 2012.
- Index entries for sequences related to Carmichael numbers.
Crossrefs
Programs
-
Haskell
a002997 n = a002997_list !! (n-1) a002997_list = [x | x <- a024556_list, all (== 0) $ map ((mod (x - 1)) . (subtract 1)) $ a027748_row x] -- Reinhard Zumkeller, Apr 12 2012
-
Magma
[n: n in [3..53*10^4 by 2] | not IsPrime(n) and n mod CarmichaelLambda(n) eq 1]; // Bruno Berselli, Apr 23 2012
-
Maple
filter:= proc(n) local q; if isprime(n) then return false fi; if 2 &^ (n-1) mod n <> 1 then return false fi; if not numtheory:-issqrfree(n) then return false fi; for q in numtheory:-factorset(n) do if (n-1) mod (q-1) <> 0 then return false fi od: true; end proc: select(filter, [seq(2*k+1,k=1..10^6)]); # Robert Israel, Dec 29 2014 isA002997 := n -> 0 = modp(n-1, numtheory:-lambda(n)) and not isprime(n) and n <> 1: select(isA002997, [$1..10000]); # Peter Luschny, Jul 21 2019
-
Mathematica
Cases[Range[1,100000,2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]] (* Artur Jasinski, Apr 05 2008; minor edit from Zak Seidov, Feb 16 2011 *) Select[Range[1,600001,2],CompositeQ[#]&&Mod[#,CarmichaelLambda[#]]==1&] (* Harvey P. Dale, Jul 08 2023 *)
-
PARI
Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1 isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1 \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
is_A002997(n, F=factor(n)~)={ #F>2 && !foreach(F,f,(n%(f[1]-1)==1 && f[2]==1) || return)} \\ No need to check parity: if efficiency is needed, scan only odd numbers. - M. F. Hasler, Aug 24 2012, edited Mar 24 2022
-
Python
from itertools import islice from sympy import nextprime, factorint def A002997_gen(): # generator of terms p, q = 3, 5 while True: for n in range(p+2,q,2): f = factorint(n) if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f): yield n p, q = q, nextprime(q) A002997_list = list(islice(A002997_gen(),20)) # Chai Wah Wu, May 11 2022
-
Sage
def isCarmichael(n): if n == 1 or is_even(n) or is_prime(n): return False factors = factor(n) for f in factors: if f[1] > 1: return False if (n - 1) % (f[0] - 1) != 0: return False return True print([n for n in (1..20000) if isCarmichael(n)]) # Peter Luschny, Apr 02 2019
Formula
Sum_{n>=1} 1/a(n) is in the interval (0.004706, 27.8724) (Bayless and Kinlaw, 2017). The upper bound was reduced to 0.0058 by Kinlaw (2023). - Amiram Eldar, Oct 26 2020, Feb 24 2024
Extensions
Links for lists of Carmichael numbers updated by Jan Kristian Haugland, Mar 25 2009 and Danny Rorabaugh, May 05 2017
Comments