cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A145532 Number of numbers removed in each step of Eratosthenes's sieve for 5!.

Original entry on oeis.org

59, 19, 7, 4
Offset: 1

Views

Author

Artur Jasinski, Oct 12 2008

Keywords

Comments

The number of steps in Eratosthenes's sieve for n! is A133228(n).
The number of primes less than 5! is 120 - 59 - 19 - 7 - 4 - 1 = 30 = A003604(5).

Examples

			a(1)=59 because in first step we removed all numbers divisible by 2 (=60) with the exception of the first one, i.e., 2.
a(2)=19 because the number of numbers divisible by 3 and not divisible by 2 is 20 and we remove all with the exception of the first one, i.e., 3.
		

Crossrefs

A000849 Number of primes <= product of first n primes, A002110(n).

Original entry on oeis.org

0, 1, 3, 10, 46, 343, 3248, 42331, 646029, 12283531, 300369796, 8028643010, 259488750744, 9414916809095, 362597750396740, 15397728527812858, 742238179058722891, 40068968501510691894, 2251262473052300960826, 139566579945945392719413
Offset: 0

Views

Author

James D. Ausfahl, gandalf(AT)hrn.office.ssi.net

Keywords

Crossrefs

Programs

  • Maple
    seq(numtheory:-pi(mul(ithprime(i),i=1..n)),n=0..10); # Robert Israel, Aug 25 2014
  • Mathematica
    a=1; Table[a=a*Prime[n]; PrimePi[a], {n, 12}]
    Join[{0},PrimePi/@FoldList[Times,Prime[Range[12]]]] (* Harvey P. Dale, Jan 28 2019 *)
  • PARI
    t=1;forprime(p=2,66,print1(primepi(t),", ");t*=p); \\ Joerg Arndt, Aug 25 2014
    
  • Sage
    [prime_pi(sloane.A002110(n)) for n in range (14)] # Giuseppe Coppoletta, Mar 02 2015

Formula

a(n) = A000720(A002110(n)). - Michel Marcus, Aug 25 2014

Extensions

More terms from David W. Wilson
a(10)-a(13) from Paul Zimmermann
a(14)-a(15) from Donovan Johnson, Mar 01 2010
a(16)-a(17) from Henri Lifchitz, Aug 25 2014
a(18)-a(19) from David Baugh, Sep 29 2020

A133228 Number of primes < square root of n!.

Original entry on oeis.org

0, 0, 1, 2, 4, 9, 19, 46, 110, 291, 822, 2455, 7740, 25635, 88849, 320749, 1202674, 4670156, 18741145, 77553119, 330321299, 1445829174, 6493985903, 29891948760, 140843699641, 678576973614, 3339785593878
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 13 2007

Keywords

Crossrefs

Cf. A003604.

Programs

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Oct 14 2007

A145537 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 10!.

Original entry on oeis.org

1814399, 604799, 241919, 138239, 75402, 58003, 40941, 34478, 26982, 20473, 18496, 15008, 13184, 12266, 10957, 9492, 8342, 7920, 7057, 6538, 6248, 5667, 5317, 4874, 4414, 4181, 4057, 3866, 3752, 3582, 3166, 3054, 2911, 2856, 2675, 2640, 2544, 2455, 2399
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 10! is 10! - (sum all numbers in this sequence) - 1 = A003604(10).

Crossrefs

Programs

  • Maple
    A145537:=Array([seq(0,j=1..291)]): lim:=10!: p:=Array([seq(ithprime(j),j=1..291)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 291 do if(n mod p[k] = 0)then A145537[k]:=A145537[k]+1: break: fi: od: od: seq(A145537[j],j=1..291); # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 10; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A061232 Number of primes p with n! < p <= (n+1)!.

Original entry on oeis.org

0, 1, 2, 6, 21, 98, 547, 3556, 26738, 227720, 2170267, 22877331, 264314464, 3320870054, 45076422125, 657316885209, 10247614197601, 170081414212020, 2994059471570761, 55718507205774017, 1092932100469356250, 22536709415953547880, 487361620197926253365
Offset: 0

Views

Author

Amarnath Murthy, Apr 23 2001

Keywords

Comments

First differences of A003604. - Artur Jasinski, Dec 13 2007

Examples

			a(3) = 6 as there are 6 primes between 3! = 6 and 4! = 24: 7,11,13,17,19,23; a(4) = 21 as there are 21 primes between 24 and 120.
		

Crossrefs

Cf. A003604.

Programs

  • Mathematica
    Table[PrimePi[(n + 1)! ] - PrimePi[n! ], {n, 0, 15}]

Formula

I conjecture that for n>2 we have n + 1/2 <= a(n)/a(n-1) <= n + 2/3. If this conjecture is true we have floor(a(n+1)/a(n)) = n. - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 03 2006

Extensions

Extended from a(6) on by Patrick De Geest, May 29 2001, using A. Booker's 'Nth Prime Page'
a(15) from Robert G. Wilson v, Jan 29 2003
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(17)-a(18) from Donovan Johnson, Oct 30 2012
a(19)-a(22) from A003604(n+1) - A003604(n) by Jinyuan Wang, Mar 11 2020

A145533 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 6!.

Original entry on oeis.org

359, 119, 47, 26, 14, 11, 7, 5, 3
Offset: 1

Views

Author

Artur Jasinski, Oct 12 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 6! is 720 - 359 - 119 - 47 - 26 - 14 - 11 - 7 - 5 - 3 - 1 = 128 = A003604(6).

Examples

			a(1)=359 because in the first step we remove all numbers divisible by 2 (= 360) with the exception of the first one, i.e., 2.
a(2)=119 because the number of numbers divisible by 3 and not divisible by 2 is 120 and we remove all such numbers with the exception of the first one, 3.
		

Crossrefs

Programs

  • Maple
    A145533 := {$(1..6!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=6!/p: for k from 2 to lim do if(member(k*p,A145533))then r:=r+1: fi: A145533 := A145533 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    {m1, m2, m3, m4, m5, m6, m7, m8, m9} = {-1, -1, -1, -1, -1, -1, -1, -1, -1};
    Do[If[Mod[n, 2] == 0, m1 = m1 + 1,
    If[Mod[n, 3] == 0, m2 = m2 + 1,
    If[Mod[n, 5] == 0, m3 = m3 + 1,
    If[Mod[n, 7] == 0, m4 = m4 + 1,
    If[Mod[n, 11] == 0, m5 = m5 + 1,
    If[Mod[n, 13] == 0, m6 = m6 + 1,
    If[Mod[n, 17] == 0, m7 = m7 + 1,
    If[Mod[n, 19] == 0, m8 = m8 + 1,
    If[Mod[n, 23] == 0, m9 = m9 + 1]]]]]]]]], {n, 1, 6!}];
    Print[{m1, m2, m3, m4, m5, m6, m7, m8, m9}] (* Artur Jasinski *)

A145534 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 7!.

Original entry on oeis.org

2519, 839, 335, 191, 104, 79, 57, 49, 39, 31, 27, 21, 18, 17, 14, 9, 7, 5, 3
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 7! is 7! - (sum all numbers in this sequence) - 1 = A003604(7).

Crossrefs

Programs

  • Maple
    A145534 := {$(1..7!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=7!/p: for k from 2 to lim do if(member(k*p,A145534))then r:=r+1: fi: A145534 := A145534 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 7; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A145535 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 8!.

Original entry on oeis.org

20159, 6719, 2687, 1535, 836, 642, 454, 381, 297, 223, 204, 170, 154, 146, 134, 119, 108, 103, 92, 84, 81, 76, 70, 64, 56, 53, 51, 47, 45, 42, 36, 32, 30, 28, 23, 21, 18, 16, 15, 12, 8, 6, 5, 3, 2, 1
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 8! is 8! - (sum all numbers in this sequence) - 1 = A003604(8).

Crossrefs

Programs

  • Maple
    A145535 := {$(1..8!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=8!/p: for k from 2 to lim do if(member(k*p,A145535))then r:=r+1: fi: A145535 := A145535 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 8; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A145536 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 9!.

Original entry on oeis.org

181439, 60479, 24191, 13823, 7540, 5800, 4092, 3446, 2701, 2046, 1842, 1487, 1296, 1200, 1070, 927, 817, 782, 703, 665, 645, 600, 574, 538, 498, 477, 465, 451, 441, 425, 385, 372, 351, 346, 326, 322, 308, 294, 288, 277, 267, 263, 248, 246, 238, 236, 221, 211
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 9! is 9! - (sum all numbers in this sequence) - 1 = A003604(9).

Crossrefs

Programs

  • Maple
    A145536:=Array([seq(0,j=1..110)]): lim:=9!: p:=Array([seq(ithprime(j),j=1..110)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 110 do if(n mod p[k] = 0)then A145536[k]:=A145536[k]+1: break: fi: od: od: seq(A145536[j],j=1..110); # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 9; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)

A062274 Number of prime divisors (with repetition) of (n!)!, A000197.

Original entry on oeis.org

0, 0, 1, 7, 45, 291, 2030, 15695, 135045, 1287243, 13495669, 154516663, 1919455487, 25721712601, 369942275033
Offset: 0

Views

Author

Jason Earls, Jul 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[(n!)!],{n,0,10}] (* Harvey P. Dale, Apr 29 2015 *)
  • PARI
    for(n=0, 10, print1(bigomega(n!!), ", "))
    
  • PARI
    a(n) = { my(res = 0, nf = n!); forprime(p = 2, nf, res+=val(nf, p) ); res }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 10 2021
    
  • Python
    from sympy import factorial,factorint
    def A062274(n): return sum(sum(factorint(i).values()) for i in range(2,factorial(n)+1)) # Chai Wah Wu, Apr 10 2021

Formula

a(n) = A001222(A000197(n)). - Michel Marcus, Oct 20 2019

Extensions

More terms from David W. Wilson, Jul 06 2001
a(11)-a(13) from Jinyuan Wang, Apr 01 2020
a(14) from David A. Corneth, Apr 10 2021
Showing 1-10 of 16 results. Next