A008543
Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).
Original entry on oeis.org
1, 5, 55, 935, 21505, 623645, 21827575, 894930575, 42061737025, 2229272062325, 131527051677175, 8549258359016375, 606997343490162625, 46738795448742522125, 3879320022245629336375, 345259481979861010937375, 32799650788086796039050625, 3312764729596766399944113125
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(n) =
A013988(n+1, 1) (first column of triangle).
-
[Round(6^n*Gamma(n+5/6)/Gamma(5/6)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
-
f := n->product( (6*k-1),k=0..n);
-
FoldList[Times,1,6Range[0,15]+5] (* Harvey P. Dale, Feb 20 2011 *)
Table[6^n*Pochhammer[5/6, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
CoefficientList[Series[(1 - 6x)^(-5/6), {x, 0, 20}], x] Range[0, 20]! (* Nikolaos Pantelidis, Jan 31 2023 *)
-
a(n)=prod(k=1,n,6*k-1) \\ Charles R Greathouse IV, Aug 17 2011
-
[6^n*rising_factorial(5/6, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019
A216702
a(n) = Product_{k=1..n} (16 - 4/k).
Original entry on oeis.org
1, 12, 168, 2464, 36960, 561792, 8614144, 132903936, 2060011008, 32044615680, 499896004608, 7816555708416, 122459372765184, 1921670157238272, 30197673899458560, 475110069351481344, 7482983592285831168, 117967035454858985472, 1861257670509997326336
Offset: 0
-
seq(product(16-4/k, k=1.. n), n=0..20);
seq((4^n/n!)*product(4*k+3, k=0.. n-1), n=0..20);
-
Table[Product[16-4/k,{k,n}],{n,0,20}] (* or *) CoefficientList[ Series[ 1/(1-16*x)^(3/4),{x,0,20}],x] (* Harvey P. Dale, Sep 19 2012 *)
A216703
a(n) = Product_{k=1..n} (49 - 7/k).
Original entry on oeis.org
1, 42, 1911, 89180, 4213755, 200574738, 9594158301, 460519598448, 22162505675310, 1068725273676060, 51619430718553698, 2496503376570051576, 120872371815599997138, 5857661095679076784380, 284096563140435224042430, 13788153197749122873525936
Offset: 0
-
seq(product(49-7/k, k=1.. n), n=0..20);
seq((7^n/n!)*product(7*k+6, k=0.. n-1), n=0..20);
-
Table[49^n * Pochhammer[6/7, n] / n!, {n, 0, 15}] (* Amiram Eldar, Aug 17 2025 *)
A216704
a(n) = Product_{k=1..n} (64 - 8/k).
Original entry on oeis.org
1, 56, 3360, 206080, 12776960, 797282304, 49963024384, 3140532961280, 197853576560640, 12486759054049280, 789163172215914496, 49932506169297862656, 3162392057388864634880, 200447004252955727626240, 12714067126901763295150080, 806919460320698577132191744
Offset: 0
-
seq(product(64-8/k, k=1.. n), n=0..20);
seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
-
Table[Product[64-8/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Sep 23 2017 *)
A216705
a(n) = Product_{k=1..n} (81 - 9/k).
Original entry on oeis.org
1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0
-
seq(product(81-9/k, k=1.. n), n=0..20);
seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
-
Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)
A216706
a(n) = Product_{k=1..n} (100 - 10/k).
Original entry on oeis.org
1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0
-
seq(product(100-10/k, k=1.. n), n=0..20);
seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);
A216786
a(n) = Product_{k=1..n} (121 - 11/k).
Original entry on oeis.org
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0
-
seq(product(121-11/k, k=1.. n), n=0..20);
seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
A216786 := proc(n)
binomial(-10/11,n)*(-121)^n ;
end proc: # R. J. Mathar, Sep 17 2012
-
Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
A248328
Square array read by antidiagonals downwards: super Patalan numbers of order 6.
Original entry on oeis.org
1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0
T(0..4,0..4) is
1 6 126 3276 93366
30 90 1260 24570 560196
990 1980 20790 324324 6162156
33660 50490 424116 5513508 89791416
1161270 1393524 9754668 108694872 1548901926
Cf.
A068555,
A025751,
A004993 (first row),
A004994 (first column),
A004995 (second row),
A004996 (second column),
A248324,
A248325,
A248326,
A248329,
A248332.
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014
A216787
a(n) = Product_{k=1..n} (144 - 12/k).
Original entry on oeis.org
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0
-
seq(product(144-12/k, k=1.. n), n=0..20);
seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
-
Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
A216788
a(n) = Product_{k=1..n} (169 - 13/k).
Original entry on oeis.org
1, 156, 25350, 4174300, 691890225, 115130533440, 19207610662240, 3210414924974400, 537343198067590200, 90034838076214002400, 15098842345381088202480, 2533860269961226256525280, 425477370330989242241536600, 71480198215606192696578148800
Offset: 0
-
seq(product(169-13/k, k=1.. n), n=0..20);
seq((13^n/n!)*product(13*k+12, k=0.. n-1), n=0..20);
-
Table[Product[169-13/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Mar 13 2013 *)
Showing 1-10 of 10 results.
Comments