cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A237930 a(n) = 3^(n+1) + (3^n-1)/2.

Original entry on oeis.org

3, 10, 31, 94, 283, 850, 2551, 7654, 22963, 68890, 206671, 620014, 1860043, 5580130, 16740391, 50221174, 150663523, 451990570, 1355971711, 4067915134, 12203745403, 36611236210, 109833708631, 329501125894, 988503377683, 2965510133050, 8896530399151
Offset: 0

Views

Author

Philippe Deléham, Feb 16 2014

Keywords

Comments

a(n-1) agrees with the graph radius of the n-Sierpinski carpet graph for n = 2 to at least n = 5. See A100774 for the graph diameter of the n-Sierpinski carpet graph.
The inverse binomial transform gives 3, 7, 14, 28, 56, ... i.e., A005009 with a leading 3. - R. J. Mathar, Jan 08 2020
First differences of A108765. The digital root of a(n) for n > 1 is always 4. a(n) is never divisible by 7 or by 12. a(n) == 10 (mod 84) for odd n. a(n) == 31 (mod 84) for even n > 0. Conjecture: This sequence contains no prime factors p == {11, 13, 23, 61 71, 73} (mod 84). - Klaus Purath, Apr 13 2020
This is a subsequence of A017209 for n > 1. See formula. - Klaus Purath, Jul 03 2020

Examples

			Ternary....................Decimal
10...............................3
101.............................10
1011............................31
10111...........................94
101111.........................283
1011111........................850
10111111......................2551
101111111.....................7654, etc.
		

Crossrefs

Cf. A000244, A003462, A005009, A005032 (first differences), A017209, A060816, A100774, A108765 (partial sums), A199109, A329774.

Programs

  • Magma
    [3^(n+1) + (3^n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
  • Mathematica
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Table[(7 3^n - 1)/2, {n, 0, 20}]
    (7 3^Range[0, 20] - 1)/2
    LinearRecurrence[{4, -3}, {10, 31}, {0, 20}]
    CoefficientList[Series[(3 - 2 x)/((x - 1) (3 x - 1)), {x, 0, 20}], x]
    (* End *)
  • PARI
    Vec((3 - 2*x) / ((1 - x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 27 2019
    

Formula

G.f.: (3-2*x)/((1-x)*(1-3*x)).
a(n) = A000244(n+1) + A003462(n).
a(n) = 3*a(n-1) + 1 for n > 0, a(0)=3. (Note that if a(0) were 1 in this recurrence we would get A003462, if it were 2 we would get A060816. - N. J. A. Sloane, Dec 06 2019)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=3, a(1)=10.
a(n) = 2*a(n-1) + 3*a(n-2) + 2 for n > 1.
a(n) = A199109(n) - 1.
a(n) = (7*3^n - 1)/2. - Eric W. Weisstein, Mar 13 2018
From Klaus Purath, Apr 13 2020: (Start)
a(n) = A057198(n+1) + A024023(n).
a(n) = A029858(n+2) - A024023(n).
a(n) = A052919(n+1) + A029858(n+1).
a(n) = (A000244(n+1) + A171498(n))/2.
a(n) = 7*A003462(n) + 3.
a(n) = A116952(n) + 2. (End)
a(n) = A017209(7*(3^(n-2)-1)/2 + 3), n > 1. - Klaus Purath, Jul 03 2020
E.g.f.: exp(x)*(7*exp(2*x) - 1)/2. - Stefano Spezia, Aug 28 2023

A199109 a(n) = (7*3^n + 1)/2.

Original entry on oeis.org

4, 11, 32, 95, 284, 851, 2552, 7655, 22964, 68891, 206672, 620015, 1860044, 5580131, 16740392, 50221175, 150663524, 451990571, 1355971712, 4067915135, 12203745404, 36611236211, 109833708632, 329501125895, 988503377684, 2965510133051, 8896530399152, 26689591197455
Offset: 0

Views

Author

Vincenzo Librandi, Nov 03 2011

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the (n+2)-Mycielski graph. - Eric W. Weisstein, Nov 29 2017

Examples

			Ternary....................Decimal
11...............................4
102.............................11
1012............................32
10112...........................95
101112.........................284
1011112........................851
10111112......................2552
101111112.....................7655
1011111112...................22964, etc.
- _Philippe Deléham_, Feb 16 2014
		

Crossrefs

Cf. A000244, A003462, A005032 (first differences), A199110, A237930.

Programs

Formula

a(n) = 3*a(n-1) - 1.
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: (4-5*x)/((1-x)*(1-3*x)). - Bruno Berselli, Nov 03 2011
a(n) = A000244(n+1) + A003462(n) + 1 = A237930(n) + 1. - Philippe Deléham, Feb 16 2014
From Elmo R. Oliveira, Apr 02 2025: (Start)
E.g.f.: exp(x)*(7*exp(2*x) + 1)/2.
a(n) = A199110(n)/2. (End)

A082541 a(n) = (7*3^n - 4*0^n)/3.

Original entry on oeis.org

1, 7, 21, 63, 189, 567, 1701, 5103, 15309, 45927, 137781, 413343, 1240029, 3720087, 11160261, 33480783, 100442349, 301327047, 903981141, 2711943423, 8135830269, 24407490807, 73222472421, 219667417263, 659002251789, 1977006755367
Offset: 0

Views

Author

Paul Barry, May 02 2003

Keywords

Comments

Binomial transform of A083495.

Crossrefs

Cf. A083497.

Programs

Formula

G.f.: (1+4*x)/(1-3*x).
E.g.f.: (7*exp(3*x) - 4*exp(0))/3.
a(n) = A005032(n-1), n > 0. - R. J. Mathar, Sep 17 2008

A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A005032.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the larger sagitta has length 7/5. The input, besides the unit circle C, is the circle C_0 with radius R_0 = 7/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n).
If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 3/5), the rational sequence would be A249458/A169634. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the larger segment see a comment under A249862. C_n = (5/7)*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 07 2014

Crossrefs

Programs

  • Magma
    I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023

Extensions

Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023

A108765 Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).

Original entry on oeis.org

1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512
Offset: 0

Views

Author

Creighton Dement, Jun 24 2005

Keywords

Comments

Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).
Inverse binomial transform gives match with first differences of A026622.
Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=(s+(n+=s));AppendTo[lst, s], {n, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *)
    CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-7,3},{1,4,14},40] (* Harvey P. Dale, Dec 11 2012 *)

Formula

From Rolf Pleisch, Feb 10 2008: (Start)
a(0) = 1; a(n) = 3*a(n-1) + n.
a(n) = (7*3^n - 2*n - 3)/4. (End)
a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012

A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A169634.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the smaller sagitta has length 3/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 3/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 7/5), the sequence would be A249457/A005032. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the smaller segment see a comment under A249864. C_n = (5/(3*7))*(7*S(n, 26/7) - 13*S(n-1, 26/7) + 7), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 08 2014

Crossrefs

Programs

  • Magma
    I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)

Extensions

Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014

A141495 a(n) = 3*a(n-1) for n>2; a(0)=1, a(1)=3, a(2)=7.

Original entry on oeis.org

1, 3, 7, 21, 63, 189, 567, 1701, 5103, 15309, 45927, 137781, 413343, 1240029, 3720087, 11160261, 33480783, 100442349, 301327047, 903981141, 2711943423, 8135830269, 24407490807, 73222472421, 219667417263, 659002251789
Offset: 0

Views

Author

Roger L. Bagula, Aug 10 2008

Keywords

Comments

A sequence of the form: a(0)=1, a(1)=prime(m), a(2)=prime(m+2), a(n)=a(1)*a(n-1).
a(n) is divisible by 7 for n>1. - Colin Barker, Jan 09 2014

Crossrefs

Essentially the same as A005032 and A084215. For other examples see A141496, etc.

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; a[2] = 7; a[n_] := a[n] = a[1]*a[n - 1]; Table[a[n], {n, 0, 30}]
    Join[{1,3},NestList[3#&,7,30]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(n) = A082541(n-1), n>1. - R. J. Mathar, Aug 27 2008
a(n) = 7*3^(n-2) for n>1. a(n)=3*a(n-1) for n>2. G.f.: (2*x^2-1) / (3*x-1). - Colin Barker, Jan 09 2014

Extensions

Edited by N. J. A. Sloane, Aug 16 2008

A171382 a(n) = (2*2^n+7*(-1)^n)/3.

Original entry on oeis.org

3, -1, 5, 3, 13, 19, 45, 83, 173, 339, 685, 1363, 2733, 5459, 10925, 21843, 43693, 87379, 174765, 349523, 699053, 1398099, 2796205, 5592403, 11184813, 22369619, 44739245, 89478483, 178956973, 357913939, 715827885, 1431655763, 2863311533
Offset: 0

Views

Author

Klaus Brockhaus, Dec 07 2009

Keywords

Comments

a(n) = A155980(n+2).
a(n) = A135351(n+3)-A135351(n+2).
Second binomial transform of a signed version of A005032 preceded by 3.
Inverse binomial transform of A008776 preceded by 3.

Crossrefs

Cf. A155980 (First differences of A135351), A135351 ((2^n+3-7*(-1)^n+3*0^n)/6), A005032 (7*3^n), A008776 (2*3^n).

Programs

  • Magma
    [ (2*2^n+7*(-1)^n)/3: n in [0..32] ];
  • Mathematica
    Nest[Append[#,Last[#]+2#[[-2]]]&,{3,-1},40]  (* Harvey P. Dale, Apr 07 2011 *)

Formula

a(n) = a(n-1)+2*a(n-2) for n > 1; a(0) = 3, a(1) = -1.
a(n) = 2^n-a(n-1) for n > 0; a(0) = 3.
G.f.: (3-4*x)/((1+x)*(1-2*x)).

A270472 Expansion of g.f. (1-2*x)/(1-9*x).

Original entry on oeis.org

1, 7, 63, 567, 5103, 45927, 413343, 3720087, 33480783, 301327047, 2711943423, 24407490807, 219667417263, 1977006755367, 17793060798303, 160137547184727, 1441237924662543, 12971141321962887, 116740271897665983, 1050662447078993847, 9455962023710944623, 85103658213398501607
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A005032, A187709 (partial sums).
Cf. A055275: (1-x)/(1-9*x); A092810: (1-3*x)/(1-9*x).

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x)/(1 - 9 x), {x, 0, 20}], x] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    Vec((1-2*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-2*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 7*9^(n-1) for n>0.
a(n) = A005032(2*n-2). - R. J. Mathar, Jan 28 2025
E.g.f.: (7*exp(9*x) + 2)/9. - Elmo R. Oliveira, Mar 25 2025

A199110 a(n) = 7*3^n + 1.

Original entry on oeis.org

8, 22, 64, 190, 568, 1702, 5104, 15310, 45928, 137782, 413344, 1240030, 3720088, 11160262, 33480784, 100442350, 301327048, 903981142, 2711943424, 8135830270, 24407490808, 73222472422, 219667417264, 659002251790, 1977006755368, 5931020266102, 17793060798304, 53379182394910
Offset: 0

Views

Author

Vincenzo Librandi, Nov 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [7*3^n+1: n in [0..30]];
    
  • Mathematica
    7*3^Range[0, 30] + 1 (* Paolo Xausa, Jan 28 2025 *)
  • Python
    def a(n): return 7*3**n + 1
    print([a(n) for n in range(26)]) # Michael S. Branicky, Aug 22 2021

Formula

a(n) = 3*a(n-1) - 2 = A005032(n) + 1.
a(n) = 4*a(n-1) - 3*a(n-2).
From Bruno Berselli, Nov 03 2011: (Start)
G.f.: 2*(4-5*x)/((1-x)*(1-3*x)).
a(n) = 2*A199109(n). (End)
E.g.f.: exp(x)*(1 + 7*exp(2*x)). - Elmo R. Oliveira, Apr 02 2025
Showing 1-10 of 13 results. Next