A005043 Riordan numbers: a(n) = (n-1)*(2*a(n-1) + 3*a(n-2))/(n+1).
1, 0, 1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, 625992, 1730787, 4805595, 13393689, 37458330, 105089229, 295673994, 834086421, 2358641376, 6684761125, 18985057351, 54022715451, 154000562758, 439742222071, 1257643249140
Offset: 0
Examples
a(5)=6 because the only dissections of a polygon with a total number of 6 edges are: five pentagons with one of the five diagonals and the hexagon with no diagonals. G.f. = 1 + x^2 + x^3 + 3*x^4 + 6*x^5 + 15*x^6 + 36*x^7 + 91*x^8 + 232*x^9 + ... From _Gus Wiseman_, Nov 15 2022: (Start) The a(0) = 1 through a(6) = 15 lone-child-avoiding (no vertices of outdegree 1) ordered rooted trees with n + 1 vertices (ranked by A358376): o . (oo) (ooo) (oooo) (ooooo) (oooooo) ((oo)o) ((oo)oo) ((oo)ooo) (o(oo)) ((ooo)o) ((ooo)oo) (o(oo)o) ((oooo)o) (o(ooo)) (o(oo)oo) (oo(oo)) (o(ooo)o) (o(oooo)) (oo(oo)o) (oo(ooo)) (ooo(oo)) (((oo)o)o) ((o(oo))o) ((oo)(oo)) (o((oo)o)) (o(o(oo))) (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Katharine Adamyk, Scott Balchin, Miguel Barrero, Steven Scheirer, Noah Wisdom, and Valentina Zapata Castro, On minimal bases in homotopical combinatorics, arXiv:2506.11159 [math.AT], 2025. See p. 16.
- Prarit Agarwal and June Nahmgoong, Singlets in the tensor product of an arbitrary number of Adjoint representations of SU(3), arXiv:2001.10826 [math.RT], 2020.
- Oswin Aichholzer, Andrei Asinowski, and Tillmann Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
- Martin Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- Gert Almkvist, Warren Dicks, and Edward Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, J. Algebra 93 (1985), no. 1, 189-214.
- D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]
- Jean Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 20.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- Frank R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- Frank R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
- Frank R. Bernhart & N. J. A. Sloane, Correspondence, 1977.
- Frank R. Bernhart & N. J. A. Sloane, Emails, April-May 1994.
- Jacob L. Bourjaily, Michael Plesser, and Cristian Vergu, The Many Colours of Amplitudes, arXiv:2412.21189 [hep-th], 2024. See pp. 12, 52.
- Tom Braden and Artem Vysogorets, Kazhdan-Lusztig polynomials of matroids under deletion, arXiv:1909.09888 [math.CO], 2019.
- Naim L. Braha and Toufik Mansour, Some properties of new sequence spaces based on Riordan numbers, Journal of Mathematical Analysis and Applications, Volume 543, Issue 2, Part 1, 128902, (2025).
- David Callan, Riordan numbers are differences of trinomial coefficients, September 25, 2006.
- David Callan, Pattern avoidance in "flattened" partitions, Discrete Math., 309 (2009), 4187-4191.
- David Callan, Bijections for Dyck paths with all peak heights of the same parity, arXiv:1702.06150 [math.CO], 2017.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Xiaomei Chen, Counting humps and peaks in Motzkin paths with height k, arXiv:2412.00668 [math.CO], 2024. See p. 11.
- William Y. C. Chen, Eva Y. P. Deng, and Laura L. M. Yang, Riordan paths and derangements, arXiv:math/0602298 [math.CO], 2006.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- Eliahu Cohen, Tobias Hansen, and Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015 (see equation (23)).
- Benoit Collins, Ion Nechita, and Deping Ye, The absolute positive partial transpose property for random induced states, arXiv preprint arXiv:1108.1935 [math-ph], 2011.
- Nicolas Crampe, Julien Gaboriaud, and Luc Vinet, Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Rodrigo De Castro, Andrés Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. See also Sci. Annals Comp. Sci. (2014) Vol. XXIV, Issue 1, 137-171. See p. 150.
- Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279 [math.GR], 2015.
- Robert Donaghey and Louis W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301.
- Serge Dulucq and Rodica Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
- László M. Fehér and András P. Juhász, Plücker formulas using equivariant cohomology of coincident root strata, arXiv:2312.06430 [math.AG], 2023. See p. 21.
- Mauricio Fernández, On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials, Journal of Elasticity (2019).
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 11.
- Yibo Gao, Principal specializations of Schubert polynomials and pattern containment, arXiv:1910.08872 [math.CO], 2019.
- Yousra Ghemit and Moussa Ahmia, Two-Catalan numbers: combinatorial interpretation and log-convexity, UPB Sci. Bull., Series A (2024) Vol 86, Iss. 4. See p. 95.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- Taras Goy and Mark Shattuck, Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
- Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Disc. Appl. Math. (2023).
- Phil Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426.
- Benjamin J. Howard, John Millson, Andrew Snowden, and Ravi Vakil, The projective invariants of ordered points on the line, arXiv:math/0505096 [math.AG], 2005.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 423.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Hana Kim and R. P. Stanley, A refined enumeration of hex trees and related polynomials, Preprint 2015, European Journal of Combinatorics, Volume 54, May 2016, pp. 207-219.
- Sergey Kitaev, Pavel Salimov, Christopher Severs, and Henning Ulfarsson, Restricted rooted non-separable planar maps, arXiv preprint arXiv:1202.1790 [math.CO], 2012.
- Sergei Kitaev, Pavel Salimov, Christopher Severs and Henning Úlfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, 2012. - From _N. J. A. Sloane_, Jan 01 2013
- D. E. Knuth, Letter to L. W. Shapiro, R. K. Guy. N. J. A. Sloane, R. P. Stanley, H. Wilf regarding A001006 and A005043.
- Nadav Kohen, Uniform Recurrence in the Motzkin Numbers and Related Sequences mod p, arXiv:2403.00149 [math.CO], 2024.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Boyu Li, http://hdl.handle.net/10012/8179, Master's Thesis, Univ. Waterloo, 2013.
- Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, and Trond Saue, Beyond the electric-dipole approximation in simulations of X-ray absorption spectroscopy: Lessons from relativistic theory, arXiv:2001.10738 [physics.chem-ph], 2020.
- Ethan Liu, On the Structure and Generators of the Chromatic Algebra, Primes Conference, MIT (2023), p. 18/23.
- Ethan Yi-Heng Liu, On the Structure and Generators of the nth-order Chromatic Algebra, arXiv:2401.06095 [math.CO], 2024.
- Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 25.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Zhousheng Mei and Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018.
- J. Menashe, Bijections on Riordan objects. [From Tom Copeland, Nov 07 2014]
- Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
- Scott Morrison, Emily Peters, and Noah Snyder, Categories generated by a trivalent vertex, arXiv preprint arXiv:1501.06869 [math.QA], 2015.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 11.
- L. Poulain d'Andecy, Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics, arXiv:2304.00850 [math.RT], 2023. See p. 64.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- Marko Riedel et al., Derivation of the Riordan number asymptotics from an inequality of central trinomial coefficients by three Egorychev residues.
- J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combinat. Theory, Ser A, 19, 214-222, 1975.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- Emmanuel Royer, Interpretation combinatoire des moments negatifs des valeurs de fonctions L au bord de la bande critique.
- Emmanuel Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 4, 601-620.
- Martin Rubey and Christian Stump, Double deficiencies of Dyck paths via the Billey-Jockusch-Stanley bijection, arXiv:1708.05092 [math.CO], 2017.
- Jesus Salas and Alan D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys. 135 (2009) 279-373; arXiv:0711.1738 [math.QA], 2007-2009. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014
- Louis W. Shapiro & N. J. A. Sloane, Correspondence, 1976.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS 12 (2009) 09.3.2.
- Mark Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101.
- H. C. H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen, Math. Annalen, June 1894, Volume 45, Issue 2, pp 153-206.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014) # 14.5.2
- Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015 [math.CO], 2013.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
- D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 03 2021]
- Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords.
- Eric Weisstein's World of Mathematics, Isotropic Tensor.
- Fujine Yano and Hiroaki Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
Crossrefs
First diagonal of triangular array in A059346.
Binomial transform of A126930. - Philippe Deléham, Nov 26 2009
The Hankel transform of a(n+1) is A128834. The Hankel transform of a(n+2) is floor((2*n+4)/3) = A004523(n+2). - Paul Barry, Mar 08 2011
The Kn11 triangle sums of triangle A175136 lead to A005043(n+2), while the Kn12(n) = A005043(n+4)-2^(n+1), Kn13(n) = A005043(n+6)-(n^2+9*n+56)*2^(n-2) and the Kn4(n) = A005043(2*n+2) = A099251(n+1) triangle sums are related to the sequence given above. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, May 06 2011
Programs
-
Haskell
a005043 n = a005043_list !! n a005043_list = 1 : 0 : zipWith div (zipWith (*) [1..] (zipWith (+) (map (* 2) $ tail a005043_list) (map (* 3) a005043_list))) [3..] -- Reinhard Zumkeller, Jan 31 2012
-
Maple
A005043 := proc(n) option remember; if n <= 1 then 1-n else (n-1)*(2*A005043(n-1)+3*A005043(n-2))/(n+1); fi; end; Order := 20: solve(series((x-x^2)/(1-x+x^2),x)=y,x); # outputs g.f.
-
Mathematica
a[0]=1; a[1]=0; a[n_]:= a[n] = (n-1)*(2*a[n-1] + 3*a[n-2])/(n+1); Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jun 14 2005 *) Table[(-3)^(1/2)/6 * (-1)^n*(3*Hypergeometric2F1[1/2,n+1,1,4/3]+ Hypergeometric2F1[1/2,n+2,1,4/3]), {n,0,32}] (* cf. Mark van Hoeij in A001006 *) (* Wouter Meeussen, Jan 23 2010 *) RecurrenceTable[{a[0]==1,a[1]==0,a[n]==(n-1) (2a[n-1]+3a[n-2])/(n+1)},a,{n,30}] (* Harvey P. Dale, Sep 27 2013 *) a[ n_]:= SeriesCoefficient[2/(1+x +Sqrt[1-2x-3x^2]), {x, 0, n}]; (* Michael Somos, Aug 21 2014 *) a[ n_]:= If[n<0, 0, 3^(n+3/2) Hypergeometric2F1[3/2, n+2, 2, 4]/I]; (* Michael Somos, Aug 21 2014 *) Table[3^(n+3/2) CatalanNumber[n] (4(5+2n)Hypergeometric2F1[3/2, 3/2, 1/2-n, 1/4] -9 Hypergeometric2F1[3/2, 5/2, 1/2 -n, 1/4])/(4^(n+3) (n+1)), {n, 0, 31}] (* Vladimir Reshetnikov, Jul 21 2019 *) Table[Sqrt[27]/8 (3/4)^n CatalanNumber[n] Hypergeometric2F1[1/2, 3/2, 1/2 - n, 1/4], {n, 0, 31}] (* Jan Mangaldan, Sep 12 2021 *)
-
Maxima
a[0]:1$ a[1]:0$ a[n]:=(n-1)*(2*a[n-1]+3*a[n-2])/(n+1)$ makelist(a[n],n,0,12); /* Emanuele Munarini, Mar 02 2011 */
-
PARI
{a(n) = if( n<0, 0, n++; polcoeff( serreverse( (x - x^3) / (1 + x^3) + x * O(x^n)), n))}; /* Michael Somos, May 31 2005 */
-
PARI
my(N=66); Vec(serreverse(x/(1+x*sum(k=1,N,x^k))+O(x^N))) \\ Joerg Arndt, Aug 19 2012
-
Python
from functools import cache @cache def A005043(n: int) -> int: if n <= 1: return 1 - n return (n - 1) * (2 * A005043(n - 1) + 3 * A005043(n - 2)) // (n + 1) print([A005043(n) for n in range(32)]) # Peter Luschny, Nov 20 2022
-
Sage
A005043 = lambda n: (-1)^n*jacobi_P(n,1,-n-3/2,-7)/(n+1) [simplify(A005043(n)) for n in (0..29)] # Peter Luschny, Sep 23 2014
-
Sage
def ms(): a, b, c, d, n = 0, 1, 1, -1, 1 yield 1 while True: yield -b + (-1)^n*d n += 1 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)/((n+1)*(n-1)) c, d = d, (3*(n-1)*c-(2*n-1)*d)/n A005043 = ms() print([next(A005043) for in range(32)]) # _Peter Luschny, May 16 2016
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000108(k). a(n) = (1/(n+1)) * Sum_{k=0..ceiling(n/2)} binomial(n+1, k)*binomial(n-k-1, k-1), for n > 1. - Len Smiley. [Comment from Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 02 2010: the latter sum should be over the range k=1..floor(n/2).]
G.f.: (1 + x - sqrt(1-2*x-3*x^2))/(2*x*(1+x)).
G.f.: 2/(1+x+sqrt(1-2*x-3*x^2)). - Paul Peart (ppeart(AT)fac.howard.edu), May 27 2000
a(n+1) + (-1)^n = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0). - Bernhart
a(n) = (1/(n+1)) * Sum_{i} (-1)^i*binomial(n+1, i)*binomial(2*n-2*i, n-i). - Bernhart
G.f. A(x) satisfies A = 1/(1+x) + x*A^2.
E.g.f.: exp(x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Apr 28 2003
a(n) = A001006(n-1) - a(n-1).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(k, floor(k/2)). - Paul Barry, Jan 27 2005
a(n) = Sum_{k>=0} A086810(n-k, k). - Philippe Deléham, May 30 2005
a(n+2) = Sum_{k>=0} A064189(n-k, k). - Philippe Deléham, May 31 2005
Moment representation: a(n) = (1/(2*Pi))*Int(x^n*sqrt((1+x)(3-x))/(1+x),x,-1,3). - Paul Barry, Jul 09 2006
Inverse binomial transform of A000108 (Catalan numbers). - Philippe Deléham, Oct 20 2006
a(n) = (2/Pi)* Integral_{x=0..Pi} (4*cos(x)^2-1)^n*sin(x)^2 dx. - Andrew V. Sutherland, Dec 02 2007
G.f.: 1/(1-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Jan 22 2009
G.f.: 1/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: 1/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-... (continued fraction). - Paul Barry, Mar 02 2010
a(n) = -(-1)^n * hypergeom([1/2, n+2],[2],4/3) / sqrt(-3). - Mark van Hoeij, Jul 02 2010
a(n) = (-1)^n*hypergeometric([-n,1/2],[2],4). - Peter Luschny, Aug 15 2012
Let A(x) be the g.f., then x*A(x) is the reversion of x/(1 + x^2*Sum_{k>=0} x^k); see A215340 for the correspondence to Dyck paths without length-1 ascents. - Joerg Arndt, Aug 19 2012 and Apr 16 2013
a(n) ~ 3^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 02 2012
G.f.: 2/(1+x+1/G(0)), where G(k) = 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 05 2013
D-finite (an alternative): (n+1)*a(n) = 3*(n-2)*a(n-3) + (5*n-7)*a(n-2) + (n-2)*a(n-1), n >= 3. - Fung Lam, Mar 22 2014
Asymptotics: a(n) = (3^(n+2)/(sqrt(3*n*Pi)*(8*n)))*(1-21/(16*n) + O(1/n^2)) (with contribution by Vaclav Kotesovec). - Fung Lam, Mar 22 2014
a(n) = T(2*n-1,n)/n, where T(n,k) = triangle of A180177. - Vladimir Kruchinin, Sep 23 2014
a(n) = (-1)^n*JacobiP(n,1,-n-3/2,-7)/(n+1). - Peter Luschny, Sep 23 2014
a(n) = Sum_{k=0..n} C(n,k)*(C(k,n-k)-C(k,n-k-1)). - Peter Luschny, Oct 01 2014
Conjecture: a(n) = A002426(n) - A005717(n), n > 0. - Mikhail Kurkov, Feb 24 2019 [The conjecture is true. - Amiram Eldar, May 17 2024]
From Peter Bala, Feb 11 2022: (Start)
Conjectures: for n >= 1, n divides a(2*n+1) and 2*n-1 divides a(2*n). (End)
Extensions
Thanks to Laura L. M. Yang (yanglm(AT)hotmail.com) for a correction, Aug 29 2004
Name changed to Riordan numbers following a suggestion from Ira M. Gessel. - N. J. A. Sloane, Jul 24 2020
Comments