cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 190 results. Next

A358451 Inverse Euler transform of the Riordan numbers, (A005043).

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 11, 28, 68, 174, 445, 1166, 3068, 8190, 21994, 59585, 162360, 445145, 1226376, 3394654, 9434260, 26317865, 73661588, 206809307, 582255448, 1643536725, 4650250254, 13186484316, 37468566744, 106666821221, 304200399505, 868977304140, 2486163857424
Offset: 0

Views

Author

Peter Luschny, Nov 20 2022

Keywords

Crossrefs

Cf. A005043.

Programs

  • Maple
    EulerInvTransform := proc(f) local c, b;
        c := proc(n) option remember;
        ifelse(n = 0, f(0), f(n) - b(n, n-1)) end:
        b := proc(n, k) option remember;
        if n = 0 then return 1 elif k < 1 then return 0 fi;
        add(binomial(c(k) + j - 1, j)*b(n-k*j, k-1), j=0..n/k) end:
    c end:
    a := EulerInvTransform(A005043): seq(a(n), n = 0..32);
  • Mathematica
    EulerInvTransform[seq_List] := Module[{final = {}}, Do[AppendTo[final, i*seq[[i]] - Sum[final[[d]]*seq[[i-d]], {d, i-1}]], {i, Length[seq]}]; Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq] }]];
    A005043[n_] := A005043[n] = If[n <= 1, 1-n, (n-1)*(2*A005043[n-1] + 3*A005043[n-2])/(n+1)];
    Join[{1}, EulerInvTransform[Array[A005043, 32]]] (* Jean-François Alcover, Jun 15 2024 *)
  • Python
    from typing import Callable
    from functools import cache
    from math import comb
    # Define 'binomial' for compatibility with Maple.
    def binomial(n: int, k: int) -> int:
        if 0 <= k <= n: return comb(n, k)
        if k <= n <  0: return comb(-k-1, n-k)*(-1)**(n-k)
        if n <  0 <= k: return comb(-n+k-1, k)*(-1)**k
        return 0
    def EulerInvTransform(f: Callable) -> Callable:
        @cache
        def h(n: int, k: int) -> int:
            if n == 0: return 1
            if k <  1: return 0
            return sum(binomial(b(k)+j-1, j) * h(n-k*j, k-1)
                   for j in range(1 + n // k))
        @cache
        def b(n: int) -> int:
            if n == 0: return f(0)
            return f(n) - h(n, n - 1)
        return b
    a = EulerInvTransform(A005043)
    print([a(n) for n in range(33)])
  • SageMath
    z = PowerSeriesRing(ZZ, 'z').gen().O(33)
    g = 1 + z + sqrt(1 - 2*z - 3*z**2)
    f = -z * g.derivative() / g
    print([1] + [sum(moebius(n // d) * f[d]
          for d in divisors(n)) // n for n in range(1, 33)])
    

Formula

a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 15 2024

A126930 Inverse binomial transform of A005043.

Original entry on oeis.org

1, -1, 2, -3, 6, -10, 20, -35, 70, -126, 252, -462, 924, -1716, 3432, -6435, 12870, -24310, 48620, -92378, 184756, -352716, 705432, -1352078, 2704156, -5200300, 10400600, -20058300, 40116600, -77558760, 155117520, -300540195, 601080390, -1166803110
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2007

Keywords

Comments

Successive binomial transforms are A005043, A000108, A007317, A064613, A104455. Hankel transform is A000012.
Moment sequence of the trace of the square of a random matrix in USp(2)=SU(2). If X=tr(A^2) is a random variable (a distributed with Haar measure) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Mobius) transformation P(x,t) = x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). The Motzkin sums, or Riordan numbers, A005043 are generated by Mot(x)=C[P(x,1)]. One could, of course, choose the Riordan numbers as the parent sequence.
O.g.f.: G(x) = C[P[P(x,1),1]1] = C[P(x,2)] = (1-sqrt(1-4*x/(1+2*x)))/2 = x - x^2 + 2 x^3 - ... = Mot[P(x,1)].
Ginv(x) = Pinv[Cinv(x),2] = P[Cinv(x),-2] = x(1-x)/[1-2x(1-x)] = (x-x^2)/[1-2(x-x^2)] = x*A146559(x).
Cf. A091867 and A210736 for an unsigned version with a leading 1. (End)

Crossrefs

Programs

  • Maple
    egf := BesselI(0,2*x) - BesselI(1,2*x):
    seq(n!*coeff(series(egf,x,34),x,n),n=0..33); # Peter Luschny, Dec 17 2014
  • Mathematica
    CoefficientList[Series[(1 + 2 x - Sqrt[1 - 4 x^2])/(2 x (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
    Table[2^n Hypergeometric2F1[3/2, -n, 2, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    x='x+O('x^50); Vec((1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x))) \\ Altug Alkan, Nov 03 2015

Formula

a(n) = (-1)^n*C(n, floor(n/2)) = (-1)^n*A001405(n).
a(2*n) = A000984(n), a(2*n+1) = -A001700(n).
a(n) = (1/Pi)*Integral_{t=0..Pi}(2cos(2t))^n*2sin^2(t) dt. - Andrew V. Sutherland, Feb 29 2008, Mar 09 2008
a(n) = (-2)^n + Sum_{k=0..n-1} a(k)*a(n-1-k), a(0)=1. - Philippe Deléham, Dec 12 2009
G.f.: (1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x)). - Philippe Deléham, Mar 01 2013
O.g.f.: (1 + x*c(x^2))/(1 + 2*x), with the o.g.f. c(x) for the Catalan numbers A000108. From the o.g.f. of the Riordan type Catalan triangle A053121. This is the rewritten g.f. given in the previous formula. This is G(-x) with the o.g.f. G(x) of A001405. - Wolfdieter Lang, Sep 22 2013
D-finite with recurrence (n+1)*a(n) +2*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 04 2013
Recurrence (an alternative): (n+1)*a(n) = 8*(n-2)*a(n-3) + 4*(n-2)*a(n-2) + 2*(-n-1)*a(n-1), n>=3. - Fung Lam, Mar 22 2014
Asymptotics: a(n) ~ (-1)^n*2^(n+1/2)/sqrt(n*Pi). - Fung Lam, Mar 22 2014
E.g.f.: BesselI(0,2*x) - BesselI(1,2*x). - Peter Luschny, Dec 17 2014
a(n) = 2^n*hypergeom([3/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015
G.f. A(x) satisfies: A(x) = 1/(1 + 2*x) + x*A(x)^2. - Ilya Gutkovskiy, Jul 10 2020

A099251 Bisection of Motzkin sums (A005043).

Original entry on oeis.org

1, 1, 3, 15, 91, 603, 4213, 30537, 227475, 1730787, 13393689, 105089229, 834086421, 6684761125, 54022715451, 439742222071, 3602118427251, 29671013856627, 245613376802185, 2042162142208813, 17047255430494497, 142816973618414817
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2004

Keywords

Comments

The Kn4 triangle sums of A175136 lead to the sequence given above (n >= 1). For the definition of the Kn4 and other triangle sums see A180662. - Johannes W. Meijer, May 06 2011
Equals the expected value of trace(O)^(2n), where O is a 3 X 3 orthogonal matrix randomly selected according to Haar measure (see MathOverflow link). - Nathaniel Johnston, Sep 05 2014
From Petros Hadjicostas, Jul 23 2020: (Start)
In Smith (1985), we apparently have a(n) = P(2*n), where P(n) is the number of linearly independent three-dimensional n-th order isotropic tensors. In the paper, he refers to Smith (1968) for more details. It is not clear why he does not list the values of P(2*n+1). See also the 1978 letter of D. L. Andrews to N. J. A. Sloane.
Eric Weisstein gives some details on how the material in Smith (1968) about isotropic tensors is related to Motzkin sums. (End)

References

  • G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).

Crossrefs

Programs

  • Maple
    G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60):
    1, seq(coeff(Gser, x^(2*n)), n=1..25); # Emeric Deutsch
    a := n -> hypergeom([1/2, -2*n], [2], 4):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Jul 25 2020
  • Mathematica
    Take[CoefficientList[Series[(1 + x - Sqrt[1 - 2 * x - 3 * x^2])/(2 * x * (1 + x)), {x, 0, 60}], x], {1, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • Maxima
    a(n):=sum(binomial(2*j,j)*(-1)^(j)*binomial(2*n+1,j+1),j,0,2*n+1)/(2*n+1); /*Vladimir Kruchinin, Apr 02 2017*/
  • PARI
    x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 12 2013
    

Formula

Recurrence: n*(2*n + 1)*a(n) = (2*n - 1)*(13*n - 10)*a(n-1) - 3*(26*n^2 - 87*n + 76)*a(n-2) + 27*(n - 2)*(2*n - 5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n + 3/2)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Conjecture: a(n) = (2/Pi)*Integral_{t=0..1} sqrt((1 - t)/t)*(1 - 8*t + 16*t^2)^n. - Benedict W. J. Irwin, Oct 05 2016
a(n) = Sum_{j=0..2*n+1} (C(2*j,j)*(-1)^(j)*C(2*n+1,j+1))/(2*n+1). - Vladimir Kruchinin, Apr 02 2017
a(n) = hypergeom([1/2, -2*n], [2], 4). - Peter Luschny, Jul 25 2020

Extensions

More terms from Emeric Deutsch, Nov 18 2004

A358376 Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043).

Original entry on oeis.org

1, 4, 8, 16, 18, 25, 32, 36, 50, 57, 64, 72, 100, 114, 121, 128, 137, 144, 200, 228, 242, 249, 256, 258, 274, 281, 288, 385, 393, 400, 456, 484, 498, 505, 512, 516, 548, 562, 569, 576, 770, 786, 793, 800, 897, 905, 912, 968, 996, 1010, 1017, 1024, 1032, 1096
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The initial terms and their corresponding trees:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   18: ((oo)o)
   25: (o(oo))
   32: (ooooo)
   36: ((oo)oo)
   50: (o(oo)o)
   57: (oo(oo))
   64: (oooooo)
   72: ((oo)ooo)
  100: (o(oo)oo)
  114: (oo(oo)o)
  121: (ooo(oo))
  128: (ooooooo)
  137: ((oo)(oo))
  144: ((oo)oooo)
  200: (o(oo)ooo)
		

Crossrefs

These trees are counted by A005043.
The series-reduced case appears to be counted by A284778.
The unordered version is A291636, counted by A001678.
A000081 counts unlabeled rooted trees, ranked by A358378.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.
A358374 ranks ordered identity trees, counted by A032027.
A358375 ranks ordered binary trees, counted by A126120.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],FreeQ[srt[#],[_]?(Length[#]==1&)]&]

A132081 Triangle (read by rows) with row sums = Motzkin sums (also called Riordan numbers) (A005043): T(n,s) = (1/n)*C(n,s)*(C(n-s,s+1) - C(n-s-2,s-1)).

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 9, 5, 1, 14, 21, 1, 20, 56, 14, 1, 27, 120, 84, 1, 35, 225, 300, 42, 1, 44, 385, 825, 330, 1, 54, 616, 1925, 1485, 132, 1, 65, 936, 4004, 5005, 1287, 1, 77, 1365, 7644, 14014, 7007, 429
Offset: 3

Views

Author

Frank R. Bernhart (farb45(AT)gmail.com), Oct 30 2007

Keywords

Comments

Whereas A005043 counts certain trees, or noncrossed partitions, this subdivides the counts according to the number of leaves, or the lattice rank. Analogous to the Narayana triangle (A001263), where rows sum to the Catalan numbers.
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
Related to the number of certain non-crossing partitions for the root system A_n. Cf. p. 12, Athanasiadis and Savvidou. See also A108263 and A100754. - Tom Copeland, Oct 19 2014

Examples

			A005043(6) = 15 = 1+9+5 since NC (noncrossed, planar) partitions of 6-point cycle without singletons have 1,9,5 items with 1,2,3 blocks.
Triangle begins:
  1;
  1,   2;
  1,   5;
  1,   9,   5;
  1,  14,  21;
  1,  20,  56,  14;
  1,  27, 120,  84;
  1,  35, 225, 300,  42;
  1,  44, 385, 825, 330;
  ...
		

Crossrefs

Programs

  • Magma
    /* triangle excluding 0 */ [[Binomial(n,k)*Binomial(n-2-k,k)/(k+1): k in [0..n-3]]: n in [3..15]]; // Vincenzo Librandi, Oct 19 2014
  • Mathematica
    Map[Most, Table[(1/n) Binomial[n, s] (Binomial[n - s, s + 1] - Binomial[n - s - 2, s - 1]), {n, 3, 14}, {s, 0, n}] /. k_ /; k <= 0 -> Nothing] // Flatten (* Michael De Vlieger, Jan 09 2016 *)

Formula

a(n,k) = binomial(n,k)*binomial(n-2-k,k)/(k+1). - David Callan, Jul 22 2008
From Peter Bala, Oct 22 2008: (Start)
O.g.f.: (1 + x - sqrt(1 - 2*x + x^2*(1 - 4*a)))/(2*x*(1 + a*x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . [corrected by Jason Yuen, Sep 22 2024]
Define a functional I on formal power series of the form f(x) = 1 + a*x + b*x^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim n -> infinity f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let now f(x) = 1 + a*x^2 + a*x^3 + a*x^4 + ... . Then the o.g.f. for this table is I(f(x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . Cf. A001263 and A108767. (End)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Name corrected by Emeric Deutsch, Dec 20 2014

A099252 Bisection of A005043.

Original entry on oeis.org

0, 1, 6, 36, 232, 1585, 11298, 83097, 625992, 4805595, 37458330, 295673994, 2358641376, 18985057351, 154000562758, 1257643249140, 10331450919456, 85317692667643, 707854577312178, 5897493615536452, 49320944483427000, 413887836110423787, 3484084625456932134, 29412628894558563849
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2004

Keywords

References

  • G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).

Crossrefs

Programs

  • Maple
    G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60):
    seq(coeff(Gser, x^(2*n-1)), n=1..25); # Emeric Deutsch
    a := n -> -hypergeom([-2*n-1, 1/2], [2], 4):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Jul 26 2020
  • Mathematica
    Take[CoefficientList[Series[(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x)), {x, 0, 60}], x], {2, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, May 12 2013
    
  • Sage
    def A():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 0
        while True:
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
            if n%2: yield -(d + b)*(1-(-1)^n)//2
    A099252  = A()
    print([next(A099252) for  in range(24)]) # _Peter Luschny, May 16 2016

Formula

Recurrence: (n+1)*(2*n+1)*a(n) = n*(26*n-7)*a(n-1) - 3*(26*n^2 - 61*n + 39)*a(n-2) + 27*(n-2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = -hypergeom([-2*n - 1, 1/2], [2], 4). - Peter Luschny, Jul 26 2020

Extensions

More terms from Emeric Deutsch, Nov 18 2004

A185812 Riordan array ( 1/(1-x), x*A005043(x) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 5, 4, 1, 1, 1, 12, 12, 7, 5, 1, 1, 1, 27, 26, 19, 9, 6, 1, 1, 1, 63, 63, 43, 27, 11, 7, 1, 1, 1, 154, 153, 110, 63, 36, 13, 8, 1, 1, 1, 386, 386, 275, 169, 86, 46, 15, 9, 1, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 05 2011

Keywords

Examples

			Array begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  3,  3,  1,  1;
  1,  6,  5,  4,  1,  1;
  1, 12, 12,  7,  5,  1,  1;
  1, 27, 26, 19,  9,  6,  1,  1;
		

Crossrefs

Cf. A082395, apparently R(n,1), A097332 (row sums). - R. J. Mathar, Feb 10 2011

Programs

  • Maple
    A185812 := proc(n,k) if n = k  or k =0 then 1; else k*add(1/(n-i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc:
    seq(seq(A185812(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
  • Mathematica
    r[n_, k_] := k*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j]/(n - i), {i, 0, n - k}, {j, k, n - i}]; r[n_, 0] = 1; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k) = k*Sum_{i=0..(n-k)} (Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j))/(n-i), k>0.
R(n,0)=1.

A194589 a(n) = A194588(n) - A005043(n); complementary Riordan numbers.

Original entry on oeis.org

0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
Offset: 0

Views

Author

Peter Luschny, Aug 30 2011

Keywords

Comments

The inverse binomial transform of a(n) is A194590(n).

Crossrefs

Programs

  • Maple
    # First method, describes the derivation:
    A056040 := n -> n!/iquo(n,2)!^2:
    A057977 := n -> A056040(n)/(iquo(n,2)+1);
    A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):
    A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):
    A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):
    A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
    A194589 := n -> A194588(n)-A005043(n):
    # Second method, more efficient:
    A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
    A194589 := proc(n) local k;
    (n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:
    # Alternatively:
    a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
    Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* Peter Luschny, Mar 07 2017 *)
  • Maxima
    a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
    
  • PARI
    a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));
    vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015

Formula

a(n) = sum_{k=0..n} C(n,k)*A194590(k).
a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).
a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012
A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - Vladimir Kruchinin, Sep 28 2015
a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - Vladimir Kruchinin, Sep 28 2015
a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - Peter Luschny, Mar 07 2017
a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 17 2024

A124926 Triangle read by rows: T(n,k) = binomial(n,k)*r(k), where r(k) are the Riordan numbers (r(k) = A005043(k); 0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 6, 4, 3, 1, 0, 10, 10, 15, 6, 1, 0, 15, 20, 45, 36, 15, 1, 0, 21, 35, 105, 126, 105, 36, 1, 0, 28, 56, 210, 336, 420, 288, 91, 1, 0, 36, 84, 378, 756, 1260, 1296, 819, 232, 1, 0, 45, 120, 630, 1512, 3150, 4320, 4095, 2320, 603
Offset: 0

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Row sums = Catalan numbers, A000108: (1, 1, 2, 5, 14, 42...); e.g., sum of row 4 terms = A000108(4) = 14 = (1 + 0 + 6 + 4 + 3). A005043 is the inverse binomial transform of the Catalan numbers.

Examples

			First few rows of the triangle:
  1;
  1,  0;
  1,  0,  1;
  1,  0,  3,  1;
  1,  0,  6,  4,  3;
  1,  0, 10, 10, 15,  6;
  1,  0, 15, 20, 45, 36, 15;
  ...
		

Crossrefs

Programs

  • GAP
    B:=Binomial;;  Flat(List([0..12], n-> List([0..n], k-> B(n,k)* Sum([0..k], j-> (-1)^j*B(k+1,j)*B(2*(k-j), k-j))/(k+1) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    B:=Binomial; [B(n,k)*(&+[(-1)^j*B(k+1,j)*B(2*(k-j), k-j): j in [0..k]])/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    r:=n->(1/(n+1))*sum((-1)^i*binomial(n+1,i)*binomial(2*n-2*i,n-i),i=0..n): T:=(n,k)->r(k)*binomial(n,k): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= T[n, k]= Binomial[n, k]*Sum[(-1)^j*Binomial[k+1, j]* Binomial[2*(k-j), k-j], {j,0,k}]/(k+1); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    T(n,k) = b=binomial; b(n,k)*sum(j=0,k, (-1)^j*b(k+1,j)*b(2*(k-j), k-j))/(k+1); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    b=binomial; [[b(n,k)*sum((-1)^j*b(k+1,j)*b(2*(k-j), k-j) for j in (0..k))/(k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
    

Extensions

Edited by N. J. A. Sloane, Nov 29 2006

A185813 Riordan array (A000045(x), x*A005043(x)).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 5, 5, 4, 1, 1, 0, 8, 11, 7, 5, 1, 1, 0, 13, 22, 18, 9, 6, 1, 1, 0, 21, 48, 39, 26, 11, 7, 1, 1, 0, 34, 106, 94, 59, 35, 13, 8, 1, 1, 0, 55, 245, 223, 152, 82, 45, 15, 9, 1, 1, 0
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 05 2011

Keywords

Examples

			Array begins:
   0;
   1,   0;
   1,   1,   0;
   2,   1,   1,   0;
   3,   3,   1,   1,  0;
   5,   5,   4,   1,  1,  0;
   8,  11,   7,   5,  1,  1,  0;
  13,  22,  18,   9,  6,  1,  1, 0;
  21,  48,  39,  26, 11,  7,  1, 1, 0;
  34, 106,  94,  59, 35, 13,  8, 1, 1, 0;
  55, 245, 223, 152, 82, 45, 15, 9, 1, 1, 0;
		

Crossrefs

Cf. A000045 (Fibonacci).

Programs

  • Maple
    A185813 := proc(n,k) if n = k then 0; elif k = 0 then combinat[fibonacci](n) ; else k*add(1/(n-i)*combinat[fibonacci](i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc:
    seq(seq(A185813(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
  • Mathematica
    r[n_, k_] := k*Sum[((-1)^(n+k-i)*Fibonacci[i]*(n-i)!*HypergeometricPFQ[{k/2 + 1/2, k/2, i+k-n}, {k, k+1}, 4])/((n-i)*k!*(n-i-k)!), {i, 0, n-k}]; r[n_, 0] := Fibonacci[n]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k) = k*Sum_{i=0..(n-k)} Fibonacci(i)*(Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>1.
R(n,0) = Fibonacci(n).
Showing 1-10 of 190 results. Next