A358451
Inverse Euler transform of the Riordan numbers, (A005043).
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 11, 28, 68, 174, 445, 1166, 3068, 8190, 21994, 59585, 162360, 445145, 1226376, 3394654, 9434260, 26317865, 73661588, 206809307, 582255448, 1643536725, 4650250254, 13186484316, 37468566744, 106666821221, 304200399505, 868977304140, 2486163857424
Offset: 0
-
EulerInvTransform := proc(f) local c, b;
c := proc(n) option remember;
ifelse(n = 0, f(0), f(n) - b(n, n-1)) end:
b := proc(n, k) option remember;
if n = 0 then return 1 elif k < 1 then return 0 fi;
add(binomial(c(k) + j - 1, j)*b(n-k*j, k-1), j=0..n/k) end:
c end:
a := EulerInvTransform(A005043): seq(a(n), n = 0..32);
-
EulerInvTransform[seq_List] := Module[{final = {}}, Do[AppendTo[final, i*seq[[i]] - Sum[final[[d]]*seq[[i-d]], {d, i-1}]], {i, Length[seq]}]; Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq] }]];
A005043[n_] := A005043[n] = If[n <= 1, 1-n, (n-1)*(2*A005043[n-1] + 3*A005043[n-2])/(n+1)];
Join[{1}, EulerInvTransform[Array[A005043, 32]]] (* Jean-François Alcover, Jun 15 2024 *)
-
from typing import Callable
from functools import cache
from math import comb
# Define 'binomial' for compatibility with Maple.
def binomial(n: int, k: int) -> int:
if 0 <= k <= n: return comb(n, k)
if k <= n < 0: return comb(-k-1, n-k)*(-1)**(n-k)
if n < 0 <= k: return comb(-n+k-1, k)*(-1)**k
return 0
def EulerInvTransform(f: Callable) -> Callable:
@cache
def h(n: int, k: int) -> int:
if n == 0: return 1
if k < 1: return 0
return sum(binomial(b(k)+j-1, j) * h(n-k*j, k-1)
for j in range(1 + n // k))
@cache
def b(n: int) -> int:
if n == 0: return f(0)
return f(n) - h(n, n - 1)
return b
a = EulerInvTransform(A005043)
print([a(n) for n in range(33)])
-
z = PowerSeriesRing(ZZ, 'z').gen().O(33)
g = 1 + z + sqrt(1 - 2*z - 3*z**2)
f = -z * g.derivative() / g
print([1] + [sum(moebius(n // d) * f[d]
for d in divisors(n)) // n for n in range(1, 33)])
A126930
Inverse binomial transform of A005043.
Original entry on oeis.org
1, -1, 2, -3, 6, -10, 20, -35, 70, -126, 252, -462, 924, -1716, 3432, -6435, 12870, -24310, 48620, -92378, 184756, -352716, 705432, -1352078, 2704156, -5200300, 10400600, -20058300, 40116600, -77558760, 155117520, -300540195, 601080390, -1166803110
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 100.
-
egf := BesselI(0,2*x) - BesselI(1,2*x):
seq(n!*coeff(series(egf,x,34),x,n),n=0..33); # Peter Luschny, Dec 17 2014
-
CoefficientList[Series[(1 + 2 x - Sqrt[1 - 4 x^2])/(2 x (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
Table[2^n Hypergeometric2F1[3/2, -n, 2, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)
-
x='x+O('x^50); Vec((1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x))) \\ Altug Alkan, Nov 03 2015
A099251
Bisection of Motzkin sums (A005043).
Original entry on oeis.org
1, 1, 3, 15, 91, 603, 4213, 30537, 227475, 1730787, 13393689, 105089229, 834086421, 6684761125, 54022715451, 439742222071, 3602118427251, 29671013856627, 245613376802185, 2042162142208813, 17047255430494497, 142816973618414817
Offset: 0
- G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
- Georgia Benkart and A. Elduque, Cross products, invariants, and centralizers, arXiv:1606.07588 [math.RT], 2016.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- MathOverflow, Moments of the trace of orthogonal matrices.
- G. F. Smith, Lectures on constitutive expressions, Mathematical models and methods in mechanics, pp. 645-678, Banach Center Publ., 15, PWN, Warsaw, 1985 (MR0874855). See p. 653.
- Eric Weisstein's World of Mathematics, Isotropic tensor.
-
G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60):
1, seq(coeff(Gser, x^(2*n)), n=1..25); # Emeric Deutsch
a := n -> hypergeom([1/2, -2*n], [2], 4):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Jul 25 2020
-
Take[CoefficientList[Series[(1 + x - Sqrt[1 - 2 * x - 3 * x^2])/(2 * x * (1 + x)), {x, 0, 60}], x], {1, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
a(n):=sum(binomial(2*j,j)*(-1)^(j)*binomial(2*n+1,j+1),j,0,2*n+1)/(2*n+1); /*Vladimir Kruchinin, Apr 02 2017*/
-
x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 12 2013
A358376
Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043).
Original entry on oeis.org
1, 4, 8, 16, 18, 25, 32, 36, 50, 57, 64, 72, 100, 114, 121, 128, 137, 144, 200, 228, 242, 249, 256, 258, 274, 281, 288, 385, 393, 400, 456, 484, 498, 505, 512, 516, 548, 562, 569, 576, 770, 786, 793, 800, 897, 905, 912, 968, 996, 1010, 1017, 1024, 1032, 1096
Offset: 1
The initial terms and their corresponding trees:
1: o
4: (oo)
8: (ooo)
16: (oooo)
18: ((oo)o)
25: (o(oo))
32: (ooooo)
36: ((oo)oo)
50: (o(oo)o)
57: (oo(oo))
64: (oooooo)
72: ((oo)ooo)
100: (o(oo)oo)
114: (oo(oo)o)
121: (ooo(oo))
128: (ooooooo)
137: ((oo)(oo))
144: ((oo)oooo)
200: (o(oo)ooo)
These trees are counted by
A005043.
The series-reduced case appears to be counted by
A284778.
A358371 and
A358372 count leaves and nodes in standard ordered rooted trees.
Cf.
A000014,
A001263,
A001679,
A004249,
A061775,
A063895,
A187306,
A331489,
A331490,
A331934,
A358373,
A358377.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
srt[n_]:=If[n==1,{},srt/@stc[n-1]];
Select[Range[100],FreeQ[srt[#],[_]?(Length[#]==1&)]&]
A132081
Triangle (read by rows) with row sums = Motzkin sums (also called Riordan numbers) (A005043): T(n,s) = (1/n)*C(n,s)*(C(n-s,s+1) - C(n-s-2,s-1)).
Original entry on oeis.org
1, 1, 2, 1, 5, 1, 9, 5, 1, 14, 21, 1, 20, 56, 14, 1, 27, 120, 84, 1, 35, 225, 300, 42, 1, 44, 385, 825, 330, 1, 54, 616, 1925, 1485, 132, 1, 65, 936, 4004, 5005, 1287, 1, 77, 1365, 7644, 14014, 7007, 429
Offset: 3
Frank R. Bernhart (farb45(AT)gmail.com), Oct 30 2007
A005043(6) = 15 = 1+9+5 since NC (noncrossed, planar) partitions of 6-point cycle without singletons have 1,9,5 items with 1,2,3 blocks.
Triangle begins:
1;
1, 2;
1, 5;
1, 9, 5;
1, 14, 21;
1, 20, 56, 14;
1, 27, 120, 84;
1, 35, 225, 300, 42;
1, 44, 385, 825, 330;
...
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
-
/* triangle excluding 0 */ [[Binomial(n,k)*Binomial(n-2-k,k)/(k+1): k in [0..n-3]]: n in [3..15]]; // Vincenzo Librandi, Oct 19 2014
-
Map[Most, Table[(1/n) Binomial[n, s] (Binomial[n - s, s + 1] - Binomial[n - s - 2, s - 1]), {n, 3, 14}, {s, 0, n}] /. k_ /; k <= 0 -> Nothing] // Flatten (* Michael De Vlieger, Jan 09 2016 *)
Original entry on oeis.org
0, 1, 6, 36, 232, 1585, 11298, 83097, 625992, 4805595, 37458330, 295673994, 2358641376, 18985057351, 154000562758, 1257643249140, 10331450919456, 85317692667643, 707854577312178, 5897493615536452, 49320944483427000, 413887836110423787, 3484084625456932134, 29412628894558563849
Offset: 0
- G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).
-
G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60):
seq(coeff(Gser, x^(2*n-1)), n=1..25); # Emeric Deutsch
a := n -> -hypergeom([-2*n-1, 1/2], [2], 4):
seq(simplify(a(n)), n=0..23); # Peter Luschny, Jul 26 2020
-
Take[CoefficientList[Series[(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x)), {x, 0, 60}], x], {2, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, May 12 2013
-
def A():
a, b, c, d, n = 0, 1, 1, -1, 1
yield 0
while True:
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
if n%2: yield -(d + b)*(1-(-1)^n)//2
A099252 = A()
print([next(A099252) for in range(24)]) # _Peter Luschny, May 16 2016
A185812
Riordan array ( 1/(1-x), x*A005043(x) ).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 5, 4, 1, 1, 1, 12, 12, 7, 5, 1, 1, 1, 27, 26, 19, 9, 6, 1, 1, 1, 63, 63, 43, 27, 11, 7, 1, 1, 1, 154, 153, 110, 63, 36, 13, 8, 1, 1, 1, 386, 386, 275, 169, 86, 46, 15, 9, 1, 1
Offset: 0
Array begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 6, 5, 4, 1, 1;
1, 12, 12, 7, 5, 1, 1;
1, 27, 26, 19, 9, 6, 1, 1;
-
A185812 := proc(n,k) if n = k or k =0 then 1; else k*add(1/(n-i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc:
seq(seq(A185812(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
-
r[n_, k_] := k*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j]/(n - i), {i, 0, n - k}, {j, k, n - i}]; r[n_, 0] = 1; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
A194589
a(n) = A194588(n) - A005043(n); complementary Riordan numbers.
Original entry on oeis.org
0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
Offset: 0
-
# First method, describes the derivation:
A056040 := n -> n!/iquo(n,2)!^2:
A057977 := n -> A056040(n)/(iquo(n,2)+1);
A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):
A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):
A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):
A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
A194589 := n -> A194588(n)-A005043(n):
# Second method, more efficient:
A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
A194589 := proc(n) local k;
(n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:
# Alternatively:
a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* Peter Luschny, Mar 07 2017 *)
-
a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
-
a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));
vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015
A124926
Triangle read by rows: T(n,k) = binomial(n,k)*r(k), where r(k) are the Riordan numbers (r(k) = A005043(k); 0 <= k <= n).
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 6, 4, 3, 1, 0, 10, 10, 15, 6, 1, 0, 15, 20, 45, 36, 15, 1, 0, 21, 35, 105, 126, 105, 36, 1, 0, 28, 56, 210, 336, 420, 288, 91, 1, 0, 36, 84, 378, 756, 1260, 1296, 819, 232, 1, 0, 45, 120, 630, 1512, 3150, 4320, 4095, 2320, 603
Offset: 0
First few rows of the triangle:
1;
1, 0;
1, 0, 1;
1, 0, 3, 1;
1, 0, 6, 4, 3;
1, 0, 10, 10, 15, 6;
1, 0, 15, 20, 45, 36, 15;
...
-
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> B(n,k)* Sum([0..k], j-> (-1)^j*B(k+1,j)*B(2*(k-j), k-j))/(k+1) ))); # G. C. Greubel, Nov 19 2019
-
B:=Binomial; [B(n,k)*(&+[(-1)^j*B(k+1,j)*B(2*(k-j), k-j): j in [0..k]])/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
-
r:=n->(1/(n+1))*sum((-1)^i*binomial(n+1,i)*binomial(2*n-2*i,n-i),i=0..n): T:=(n,k)->r(k)*binomial(n,k): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_, k_]:= T[n, k]= Binomial[n, k]*Sum[(-1)^j*Binomial[k+1, j]* Binomial[2*(k-j), k-j], {j,0,k}]/(k+1); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
-
T(n,k) = b=binomial; b(n,k)*sum(j=0,k, (-1)^j*b(k+1,j)*b(2*(k-j), k-j))/(k+1); \\ G. C. Greubel, Nov 19 2019
-
b=binomial; [[b(n,k)*sum((-1)^j*b(k+1,j)*b(2*(k-j), k-j) for j in (0..k))/(k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 5, 5, 4, 1, 1, 0, 8, 11, 7, 5, 1, 1, 0, 13, 22, 18, 9, 6, 1, 1, 0, 21, 48, 39, 26, 11, 7, 1, 1, 0, 34, 106, 94, 59, 35, 13, 8, 1, 1, 0, 55, 245, 223, 152, 82, 45, 15, 9, 1, 1, 0
Offset: 0
Array begins:
0;
1, 0;
1, 1, 0;
2, 1, 1, 0;
3, 3, 1, 1, 0;
5, 5, 4, 1, 1, 0;
8, 11, 7, 5, 1, 1, 0;
13, 22, 18, 9, 6, 1, 1, 0;
21, 48, 39, 26, 11, 7, 1, 1, 0;
34, 106, 94, 59, 35, 13, 8, 1, 1, 0;
55, 245, 223, 152, 82, 45, 15, 9, 1, 1, 0;
-
A185813 := proc(n,k) if n = k then 0; elif k = 0 then combinat[fibonacci](n) ; else k*add(1/(n-i)*combinat[fibonacci](i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc:
seq(seq(A185813(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
-
r[n_, k_] := k*Sum[((-1)^(n+k-i)*Fibonacci[i]*(n-i)!*HypergeometricPFQ[{k/2 + 1/2, k/2, i+k-n}, {k, k+1}, 4])/((n-i)*k!*(n-i-k)!), {i, 0, n-k}]; r[n_, 0] := Fibonacci[n]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
Showing 1-10 of 190 results.
Comments