cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A202847 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A126930.

Original entry on oeis.org

1, -1, 1, 2, -2, 1, -3, 5, -3, 1, 6, -10, 9, -4, 1, -10, 22, -22, 14, -5, 1, 20, -44, 54, -40, 20, -6, 1, -35, 93, -123, 109, -65, 27, -7, 1, 70, -186, 281, -276, 195, -98, 35, -8, 1, -126, 386, -618, 682, -541, 321, -140, 44, -9, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2013

Keywords

Examples

			Triangle begins
1
-1, 1
2, -2, 1
-3, 5, -3, 1
6, -10, 9, -4, 1
-10, 22, -22, 14, -5, 1
20, -44, 54, -40, 20, -6, 1
-35, 93, -123, 109, -65, 27, -7, 1
...
Production matrix begins
x, 1
1, x, 1
1, 1, x, 1
1, 1, 1, x, 1
1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, x, 1
..., with x = -1.
		

Crossrefs

Cf. (sequences with similar production matrix) A097609 (x=0), A033184 (x=1), A104259 (x=2), A171568 (x=3), A171589 (x=4)

Formula

T(n,k) = (-1)^(n-k)*A054336(n,k).
Sum_{k, 0<=k<=n}T(n,k)*x^k = (-1)^n*A126931(n), (-1)^n*A054341(n), A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively.

A005043 Riordan numbers: a(n) = (n-1)*(2*a(n-1) + 3*a(n-2))/(n+1).

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, 625992, 1730787, 4805595, 13393689, 37458330, 105089229, 295673994, 834086421, 2358641376, 6684761125, 18985057351, 54022715451, 154000562758, 439742222071, 1257643249140
Offset: 0

Views

Author

Keywords

Comments

Also called Motzkin summands or ring numbers.
The old name was "Motzkin sums", used in certain publications. The sequence has the property that Motzkin(n) = A001006(n) = a(n) + a(n+1), e.g., A001006(4) = 9 = 3 + 6 = a(4) + a(5).
Number of 'Catalan partitions', that is partitions of a set 1,2,3,...,n into parts that are not singletons and whose convex hulls are disjoint when the points are arranged on a circle (so when the parts are all pairs we get Catalan numbers). - Aart Blokhuis (aartb(AT)win.tue.nl), Jul 04 2000
Number of ordered trees with n edges and no vertices of outdegree 1. For n > 1, number of dissections of a convex polygon by nonintersecting diagonals with a total number of n+1 edges. - Emeric Deutsch, Mar 06 2002
Number of Motzkin paths of length n with no horizontal steps at level 0. - Emeric Deutsch, Nov 09 2003
Number of Dyck paths of semilength n with no peaks at odd level. Example: a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUDUDD, where U=(1,1), D=(1,-1). Number of Dyck paths of semilength n with no ascents of length 1 (an ascent in a Dyck path is a maximal string of up steps). Example: a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUUDDD. - Emeric Deutsch, Dec 05 2003
Arises in Schubert calculus as follows. Let P = complex projective space of dimension n+1. Take n projective subspaces of codimension 3 in P in general position. Then a(n) is the number of lines of P intersecting all these subspaces. - F. Hirzebruch, Feb 09 2004
Difference between central trinomial coefficient and its predecessor. Example: a(6) = 15 = 141 - 126 and (1 + x + x^2)^6 = ... + 126*x^5 + 141*x^6 + ... (Catalan number A000108(n) is the difference between central binomial coefficient and its predecessor.) - David Callan, Feb 07 2004
a(n) = number of 321-avoiding permutations on [n] in which each left-to-right maximum is a descent (i.e., is followed by a smaller number). For example, a(4) counts 4123, 3142, 2143. - David Callan, Jul 20 2005
The Hankel transform of this sequence give A000012 = [1, 1, 1, 1, 1, 1, 1, ...]; example: Det([1, 0, 1, 1; 0, 1, 1, 3; 1, 1, 3, 6; 1, 3, 6, 15]) = 1. - Philippe Deléham, May 28 2005
The number of projective invariants of degree 2 for n labeled points on the projective line. - Benjamin J. Howard (bhoward(AT)ima.umn.edu), Nov 24 2006
Define a random variable X=trA^2, where A is a 2 X 2 unitary symplectic matrix chosen from USp(2) with Haar measure. The n-th central moment of X is E[(X+1)^n] = a(n). - Andrew V. Sutherland, Dec 02 2007
Let V be the adjoint representation of the complex Lie algebra sl(2). The dimension of the invariant subspace of the n-th tensor power of V is a(n). - Samson Black (sblack1(AT)uoregon.edu), Aug 27 2008
Starting with offset 3 = iterates of M * [1,1,1,...], where M = a tridiagonal matrix with [0,1,1,1,...] in the main diagonal and [1,1,1,...] in the super and subdiagonals. - Gary W. Adamson, Jan 08 2009
a(n) has the following standard-Young-tableaux (SYT) interpretation: binomial(n+1,k)*binomial(n-k-1,k-1)/(n+1)=f^(k,k,1^{n-2k}) where f^lambda equals the number of SYT of shape lambda. - Amitai Regev (amotai.regev(AT)weizmann.ac.il), Mar 02 2010
a(n) is also the sum of the numbers of standard Young tableaux of shapes (k,k,1^{n-2k}) for all 1 <= k <= floor(n/2). - Amitai Regev (amotai.regev(AT)weizmann.ac.il), Mar 10 2010
a(n) is the number of derangements of {1,2,...,n} having genus 0. The genus g(p) of a permutation p of {1,2,...,n} is defined by g(p)=(1/2)[n+1-z(p)-z(cp')], where p' is the inverse permutation of p, c = 234...n1 = (1,2,...,n), and z(q) is the number of cycles of the permutation q. Example: a(3)=1 because p=231=(123) is the only derangement of {1,2,3} with genus 0. Indeed, cp'=231*312=123=(1)(2)(3) and so g(p) = (1/2)(3+1-1-3)=0. - Emeric Deutsch, May 29 2010
Apparently: Number of Dyck 2n-paths with all ascents length 2 and no descent length 2. - David Scambler, Apr 17 2012
This is true. Proof: The mapping "insert a peak (UD) after each upstep (U)" is a bijection from all Dyck n-paths to those Dyck (2n)-paths in which each ascent is of length 2. It sends descents of length 1 in the n-path to descents of length 2 in the (2n)-path. But Dyck n-paths with no descents of length 1 are equinumerous with Riordan n-paths (Motzkin n-paths with no flatsteps at ground level) as follows. Given a Dyck n-path with no descents of length 1, split it into consecutive step pairs, then replace UU with U, DD with D, UD with a blue flatstep (F), DU with a red flatstep, and concatenate the new steps to get a colored Motzkin path. Each red F will be (immediately) preceded by a blue F or a D. In the latter case, transfer the red F so that it precedes the matching U of the D. Finally, erase colors to get the required Riordan path. For example, with lowercase f denoting a red flatstep, U^5 D^2 U D^4 U^4 D^3 U D^2 -> (U^2, U^2, UD, DU, D^2, D^2, U^2, U^2 D^2, DU, D^2) -> UUFfDDUUDfD -> UUFFDDUFUDD. - David Callan, Apr 25 2012
From Nolan Wallach, Aug 20 2014: (Start)
Let ch[part1, part2] be the value of the character of the symmetric group on n letters corresponding to the partition part1 of n on the conjucgacy class given by part2. Let A[n] be the set of (n+1) partitions of 2n with parts 1 or 2. Then deleting the first term of the sequence one has a(n) = Sum_{k=1..n+1} binomial(n,k-1)*ch[[n,n], A[n][[k]]])/2^n. This via the Frobenius Character Formula can be interpreted as the dimension of the SL(n,C) invariants in tensor^n (wedge^2 C^n).
Explanation: Let p_j denote sum (x_i)^j the sum in k variables. Then the Frobenius formula says then (p_1)^j_1 (p_2)^j_2 ... (p_r)^j_r is equal to sum(lambda, ch[lambda, 1^j_12^j_2 ... r^j_r] S_lambda) with S_lambda the Schur function corresponding to lambda. This formula implies that the coefficient of S([n,n]) in (((p_1)^1+p_2)/2)^n in its expansion in terms of Schur functions is the right hand side of our formula. If we specialize the number of variables to 2 then S[n,n](x,y)=(xy)^n. Which when restricted to y=x^(-1) is 1. That is it is 1 on SL(2).
On the other hand ((p_1)^2+p_2)/2 is the complete homogeneous symmetric function of degree 2 that is tr(S^2(X)). Thus our formula for a(n) is the same as that of Samson Black above since his V is the same as S^2(C^2) as a representation of SL(2). On the other hand, if we multiply ch(lambda) by sgn you get ch(Transpose(lambda)). So ch([n,n]) becomes ch([2,...,2]) (here there are n 2's). The formula for a(n) is now (1/2^n)*Sum_{j=0..n} ch([2,..,2], 1^(2n-2j) 2^j])*(-1)^j)*binomial(n,j), which calculates the coefficient of S_(2,...,2) in (((p_1)^2-p_2)/2)^n. But ((p_1)^2-p_2)/2 in n variables is the second elementary symmetric function which is the character of wedge^2 C^n and S_(2,...,2) is 1 on SL(n).
(End)
a(n) = number of noncrossing partitions (A000108) of [n] that contain no singletons, also number of nonnesting partitions (A000108) of [n] that contain no singletons. - David Callan, Aug 27 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Various relations among the o.g.f.s may be easily constructed, such as Fib[-Mot(-x)] = -P[P(-x)] = x/(1-2*x) a generating fct for 2^n.
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1]. (End)
Consistent with David Callan's comment above, A249548, provides a refinement of the Motzkin sums into the individual numbers for the non-crossing partitions he describes. - Tom Copeland, Nov 09 2014
The number of lattice paths from (0,0) to (n,0) that do not cross below the x-axis and use up-step=(1,1) and down-steps=(1,-k) where k is a positive integer. For example, a(4) = 3: [(1,1)(1,1)(1,-1)(1,-1)], [(1,1)(1,-1)(1,1)(1,-1)] and [(1,1)(1,1)(1,1)(1,-3)]. - Nicholas Ham, Aug 19 2015
A series created using 2*(a(n) + a(n+1)) + (a(n+1) + a(n+2)) has Hankel transform of F(2n), offset 3, F being a Fibonacci number, A001906 (Empirical observation). - Tony Foster III, Jul 30 2016
The series a(n) + A001006(n) has Hankel transform F(2n+1), offset n=1, F being the Fibonacci bisection A001519 (empirical observation). - Tony Foster III, Sep 05 2016
The Rubey and Stump reference proves a refinement of a conjecture of René Marczinzik, which they state as: "The number of 2-Gorenstein algebras which are Nakayama algebras with n simple modules and have an oriented line as associated quiver equals the number of Motzkin paths of length n. Moreover, the number of such algebras having the double centraliser property with respect to a minimal faithful projective-injective module equals the number of Riordan paths, that is, Motzkin paths without level-steps at height zero, of length n." - Eric M. Schmidt, Dec 16 2017
A connection to the Thue-Morse sequence: (-1)^a(n) = (-1)^A010060(n) * (-1)^A010060(n+1) = A106400(n) * A106400(n+1). - Vladimir Reshetnikov, Jul 21 2019
Named by Bernhart (1999) after the American mathematician John Riordan (1903-1988). - Amiram Eldar, Apr 15 2021

Examples

			a(5)=6 because the only dissections of a polygon with a total number of 6 edges are: five pentagons with one of the five diagonals and the hexagon with no diagonals.
G.f. = 1 + x^2 + x^3 + 3*x^4 + 6*x^5 + 15*x^6 + 36*x^7 + 91*x^8 + 232*x^9 + ...
From _Gus Wiseman_, Nov 15 2022: (Start)
The a(0) = 1 through a(6) = 15 lone-child-avoiding (no vertices of outdegree 1) ordered rooted trees with n + 1 vertices (ranked by A358376):
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)
                     ((oo)o)  ((oo)oo)  ((oo)ooo)
                     (o(oo))  ((ooo)o)  ((ooo)oo)
                              (o(oo)o)  ((oooo)o)
                              (o(ooo))  (o(oo)oo)
                              (oo(oo))  (o(ooo)o)
                                        (o(oooo))
                                        (oo(oo)o)
                                        (oo(ooo))
                                        (ooo(oo))
                                        (((oo)o)o)
                                        ((o(oo))o)
                                        ((oo)(oo))
                                        (o((oo)o))
                                        (o(o(oo)))
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A020474, first differences of A082395.
First diagonal of triangular array in A059346.
Binomial transform of A126930. - Philippe Deléham, Nov 26 2009
The Hankel transform of a(n+1) is A128834. The Hankel transform of a(n+2) is floor((2*n+4)/3) = A004523(n+2). - Paul Barry, Mar 08 2011
The Kn11 triangle sums of triangle A175136 lead to A005043(n+2), while the Kn12(n) = A005043(n+4)-2^(n+1), Kn13(n) = A005043(n+6)-(n^2+9*n+56)*2^(n-2) and the Kn4(n) = A005043(2*n+2) = A099251(n+1) triangle sums are related to the sequence given above. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, May 06 2011
Cf. A187306 (self-convolution), A348210 (column 1).
Bisections: A099251, A099252.

Programs

  • Haskell
    a005043 n = a005043_list !! n
    a005043_list = 1 : 0 : zipWith div
       (zipWith (*) [1..] (zipWith (+)
           (map (* 2) $ tail a005043_list) (map (* 3) a005043_list))) [3..]
    -- Reinhard Zumkeller, Jan 31 2012
    
  • Maple
    A005043 := proc(n) option remember; if n <= 1 then 1-n else (n-1)*(2*A005043(n-1)+3*A005043(n-2))/(n+1); fi; end;
    Order := 20: solve(series((x-x^2)/(1-x+x^2),x)=y,x); # outputs g.f.
  • Mathematica
    a[0]=1; a[1]=0; a[n_]:= a[n] = (n-1)*(2*a[n-1] + 3*a[n-2])/(n+1); Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jun 14 2005 *)
    Table[(-3)^(1/2)/6 * (-1)^n*(3*Hypergeometric2F1[1/2,n+1,1,4/3]+ Hypergeometric2F1[1/2,n+2,1,4/3]), {n,0,32}] (* cf. Mark van Hoeij in A001006 *) (* Wouter Meeussen, Jan 23 2010 *)
    RecurrenceTable[{a[0]==1,a[1]==0,a[n]==(n-1) (2a[n-1]+3a[n-2])/(n+1)},a,{n,30}] (* Harvey P. Dale, Sep 27 2013 *)
    a[ n_]:= SeriesCoefficient[2/(1+x +Sqrt[1-2x-3x^2]), {x, 0, n}]; (* Michael Somos, Aug 21 2014 *)
    a[ n_]:= If[n<0, 0, 3^(n+3/2) Hypergeometric2F1[3/2, n+2, 2, 4]/I]; (* Michael Somos, Aug 21 2014 *)
    Table[3^(n+3/2) CatalanNumber[n] (4(5+2n)Hypergeometric2F1[3/2, 3/2, 1/2-n, 1/4] -9 Hypergeometric2F1[3/2, 5/2, 1/2 -n, 1/4])/(4^(n+3) (n+1)), {n, 0, 31}] (* Vladimir Reshetnikov, Jul 21 2019 *)
    Table[Sqrt[27]/8 (3/4)^n CatalanNumber[n] Hypergeometric2F1[1/2, 3/2, 1/2 - n, 1/4], {n, 0, 31}] (* Jan Mangaldan, Sep 12 2021 *)
  • Maxima
    a[0]:1$
    a[1]:0$
    a[n]:=(n-1)*(2*a[n-1]+3*a[n-2])/(n+1)$
    makelist(a[n],n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( serreverse( (x - x^3) / (1 + x^3) + x * O(x^n)), n))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    my(N=66); Vec(serreverse(x/(1+x*sum(k=1,N,x^k))+O(x^N))) \\ Joerg Arndt, Aug 19 2012
    
  • Python
    from functools import cache
    @cache
    def A005043(n: int) -> int:
        if n <= 1: return 1 - n
        return (n - 1) * (2 * A005043(n - 1) + 3 * A005043(n - 2)) // (n + 1)
    print([A005043(n) for n in range(32)]) # Peter Luschny, Nov 20 2022
  • Sage
    A005043 = lambda n: (-1)^n*jacobi_P(n,1,-n-3/2,-7)/(n+1)
    [simplify(A005043(n)) for n in (0..29)]
    # Peter Luschny, Sep 23 2014
    
  • Sage
    def ms():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 1
        while True:
            yield -b + (-1)^n*d
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)/((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)/n
    A005043 = ms()
    print([next(A005043) for  in range(32)]) # _Peter Luschny, May 16 2016
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000108(k). a(n) = (1/(n+1)) * Sum_{k=0..ceiling(n/2)} binomial(n+1, k)*binomial(n-k-1, k-1), for n > 1. - Len Smiley. [Comment from Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 02 2010: the latter sum should be over the range k=1..floor(n/2).]
G.f.: (1 + x - sqrt(1-2*x-3*x^2))/(2*x*(1+x)).
G.f.: 2/(1+x+sqrt(1-2*x-3*x^2)). - Paul Peart (ppeart(AT)fac.howard.edu), May 27 2000
a(n+1) + (-1)^n = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0). - Bernhart
a(n) = (1/(n+1)) * Sum_{i} (-1)^i*binomial(n+1, i)*binomial(2*n-2*i, n-i). - Bernhart
G.f. A(x) satisfies A = 1/(1+x) + x*A^2.
E.g.f.: exp(x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Apr 28 2003
a(n) = A001006(n-1) - a(n-1).
a(n+1) = Sum_{k=0..n} (-1)^k*A026300(n, k), where A026300 is the Motzkin triangle.
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(k, floor(k/2)). - Paul Barry, Jan 27 2005
a(n) = Sum_{k>=0} A086810(n-k, k). - Philippe Deléham, May 30 2005
a(n+2) = Sum_{k>=0} A064189(n-k, k). - Philippe Deléham, May 31 2005
Moment representation: a(n) = (1/(2*Pi))*Int(x^n*sqrt((1+x)(3-x))/(1+x),x,-1,3). - Paul Barry, Jul 09 2006
Inverse binomial transform of A000108 (Catalan numbers). - Philippe Deléham, Oct 20 2006
a(n) = (2/Pi)* Integral_{x=0..Pi} (4*cos(x)^2-1)^n*sin(x)^2 dx. - Andrew V. Sutherland, Dec 02 2007
G.f.: 1/(1-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Jan 22 2009
G.f.: 1/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: 1/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-... (continued fraction). - Paul Barry, Mar 02 2010
a(n) = -(-1)^n * hypergeom([1/2, n+2],[2],4/3) / sqrt(-3). - Mark van Hoeij, Jul 02 2010
a(n) = (-1)^n*hypergeometric([-n,1/2],[2],4). - Peter Luschny, Aug 15 2012
Let A(x) be the g.f., then x*A(x) is the reversion of x/(1 + x^2*Sum_{k>=0} x^k); see A215340 for the correspondence to Dyck paths without length-1 ascents. - Joerg Arndt, Aug 19 2012 and Apr 16 2013
a(n) ~ 3^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 02 2012
G.f.: 2/(1+x+1/G(0)), where G(k) = 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 05 2013
D-finite (an alternative): (n+1)*a(n) = 3*(n-2)*a(n-3) + (5*n-7)*a(n-2) + (n-2)*a(n-1), n >= 3. - Fung Lam, Mar 22 2014
Asymptotics: a(n) = (3^(n+2)/(sqrt(3*n*Pi)*(8*n)))*(1-21/(16*n) + O(1/n^2)) (with contribution by Vaclav Kotesovec). - Fung Lam, Mar 22 2014
a(n) = T(2*n-1,n)/n, where T(n,k) = triangle of A180177. - Vladimir Kruchinin, Sep 23 2014
a(n) = (-1)^n*JacobiP(n,1,-n-3/2,-7)/(n+1). - Peter Luschny, Sep 23 2014
a(n) = Sum_{k=0..n} C(n,k)*(C(k,n-k)-C(k,n-k-1)). - Peter Luschny, Oct 01 2014
Conjecture: a(n) = A002426(n) - A005717(n), n > 0. - Mikhail Kurkov, Feb 24 2019 [The conjecture is true. - Amiram Eldar, May 17 2024]
a(n) = A309303(n) + A309303(n+1). - Vladimir Reshetnikov, Jul 22 2019
From Peter Bala, Feb 11 2022: (Start)
a(n) = A005773(n+1) - 2*A005717(n) for n >= 1.
Conjectures: for n >= 1, n divides a(2*n+1) and 2*n-1 divides a(2*n). (End)

Extensions

Thanks to Laura L. M. Yang (yanglm(AT)hotmail.com) for a correction, Aug 29 2004
Name changed to Riordan numbers following a suggestion from Ira M. Gessel. - N. J. A. Sloane, Jul 24 2020

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A007317 Binomial transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A002212 (the restricted hexagonal polyominoes with n cells). Number of Schroeder paths (i.e., consisting of steps U=(1,1),D=(1,-1),H=(2,0) and never going below the x-axis) from (0,0) to (2n-2,0), with no peaks at even level. Example: a(3)=5 because among the six Schroeder paths from (0,0) to (4,0) only UUDD has a peak at an even level. - Emeric Deutsch, Dec 06 2003
Number of binary trees of weight n where leaves have positive integer weights. Non-commutative Non-associative version of partitions of n. - Michael Somos, May 23 2005
Appears also as the number of Euler trees with total weight n (associated with even switching class of matrices of order 2n). - David Garber, Sep 19 2005
Number of symmetric hex trees with 2n-1 edges; also number of symmetric hex trees with 2n-2 edges. A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). A hex tree is symmetric if it is identical with its reflection in a bisector through the root. - Emeric Deutsch, Dec 19 2006
The Hankel transform of [1, 2, 5, 15, 51, 188, ...] is [1, 1, 1, 1, 1, ...], see A000012 ; the Hankel transform of [2, 5, 15, 51, 188, 731, ...] is [2, 5, 13, 34, 89, ...], see A001519. - Philippe Deléham, Dec 19 2006
a(n) = number of 321-avoiding partitions of [n]. A partition is 321-avoiding if the permutation obtained from its canonical form (entries in each block listed in increasing order and blocks listed in increasing order of their first entries) is 321-avoiding. For example, the only partition of [5] that fails to be 321-avoiding is 15/24/3 because the entries 5,4,3 in the permutation 15243 form a 321 pattern. - David Callan, Jul 22 2008
The sequence 1,1,2,5,15,51,188,... has Hankel transform A001519. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Equals INVERT transform of A033321: (1, 1, 2, 6, 21, 79, 311, ...).
Equals INVERTi transform of A002212: (1, 3, 10, 36, 137, ...).
Convolved with A026378, (1, 4, 17, 75, 339, ...) = A026376: (1, 6, 30, 144, ...)
(End)
a(n) is the number of vertices of the composihedron CK(n). The composihedra are a sequence of convex polytopes used to define maps of certain homotopy H-spaces. They are cellular quotients of the multiplihedra and cellular covers of the cubes. - Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 3 colors. Example: a(4)=15 because we have 2^3 = 8 paths of shape UHD, 2 paths of shape HUD, 2 paths of shape UDH, and 3 paths of shape UHD; here U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, May 02 2011
REVERT transform of (1, 2, -3, 5, -8, 13, -21, 34, ... ) where the entries are Fibonacci numbers, A000045. Equivalently, coefficients in the series reversion of x(1-x)/(1+x-x^2). This means that the substitution of the gf (1-x-(1-6x+5x^2)^(1/2))/(2(1-x)) for x in x(1-x)/(1+x-x^2) will simplify to x. - David Callan, Nov 11 2012
The number of plane trees with nodes that have positive integer weights and whose total weight is n. - Brad R. Jones, Jun 12 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
Starting with offset 0, a(n) is also the number of Schröder paths of semilength n avoiding UH (an up step directly followed by a long horizontal step). Example: a(2)=5 because among the six possible Schröder paths of semilength 2 only UHD contains UH. - Valerie Roitner, Jul 23 2020

Examples

			a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018
		

References

  • J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A181768 for another version. - N. J. A. Sloane, Nov 12 2010
First column of triangle A104259. Row sums of absolute values of A091699.
Number of vertices of multiplihedron A121988.
m-th binomial transform of the Catalan numbers: A126930 (m = -2), A005043 (m = -1), A000108 (m = 0), A064613 (m = 2), A104455 (m = 3), A104498 (m = 4) and A154623 (m = 5).

Programs

  • Maple
    G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # Emeric Deutsch, Aug 12 2007
    seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # Peter Luschny, Sep 23 2014
  • Mathematica
    Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* Len Smiley, Apr 10 2000 *)
    Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* Robert G. Wilson v, Apr 15 2011 *)
    a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 07 2012 *)
    Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* Vincenzo Librandi, Nov 03 2014 *)
    Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* Vaclav Kotesovec, May 12 2022 *)
  • PARI
    {a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* Michael Somos, May 23 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 23 2005 */
    
  • PARI
    /* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna

Formula

(n+2)*a(n+2) = (6n+4)*a(n+1) - 5n*a(n).
G.f.: 3/2-(1/2)*sqrt((1-5*x)/(1-x)) [Gessel-Kim]. - N. J. A. Sloane, Jul 05 2014
G.f. for sequence doubled: (1/(2*x))*(1+x-(1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)).
a(n) = hypergeom([1/2, -n], [2], -4), n=0, 1, 2...; Integral representation as n-th moment of a positive function on a finite interval of the positive half-axis: a(n)=int(x^n*sqrt((5-x)/(x-1))/(2*Pi), x=1..5), n=0, 1, 2... This representation is unique. - Karol A. Penson, Sep 24 2001
a(1)=1, a(n)=1+sum(i=1, n-1, a(i)*a(n-i)). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*binomial(k, floor(k/2)) [offset 0]. - Paul Barry, Jan 27 2005
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=x-(1-x)(y-y^2). - Michael Somos, May 23 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(x, y, z)=x(z-z^2)+(x-1)y^2 . - Michael Somos, May 23 2005
G.f. (for offset 0): (-1+x+(1-6*x+5*x^2)^(1/2))/(2*(-x+x^2)).
G.f. =z*c(z/(1-z))/(1-z) = 1/2 - (1/2)sqrt(1-4z/(1-z)), where c(z)=(1-sqrt(1-4z))/(2z) is the Catalan function (follows from Michael Somos' first comment). - Emeric Deutsch, Aug 12 2007
G.f.: 1/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Apr 19 2009
a(n) = Sum_{k, 0<=k<=n} A091965(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
E.g.f.: exp(3x)*(I_0(2x)-I_1(2x)), where I_k(x) is a modified Bessel function of the first kind. - Emanuele Munarini, Apr 15 2011
If we prefix sequence with an additional term a(0)=1, g.f. is (3-3*x-sqrt(1-6*x+5*x^2))/(2*(1-x)). [See Kim, 2011] - N. J. A. Sloane, May 13 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 1, ...
1, 1, 1, 1, 1, 2, ...
... (End)
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(n+1))/(1 - A(x)); offset=0. - Paul D. Hanna, Nov 07 2011
G.f.: 1/x - 1/x/Q(0), where Q(k)= 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
G.f.: (1-x - (1-5*x)*G(0))/(2*x*(1-x)), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
Asymptotics (for offset 0): a(n) ~ 5^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f.: G(0)/(1-x), where G(k) = 1 + (4*k+1)*x/((k+1)*(1-x) - 2*x*(1-x)*(k+1)*(4*k+3)/(2*x*(4*k+3) + (2*k+3)*(1-x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
a(n) = JacobiP(n-1,1,-n-1/2,9)/n. - Peter Luschny, Sep 23 2014
0 = +a(n)*(+25*a(n+1) -50*a(n+2) +15*a(n+3)) +a(n+1)*(-10*a(n+1) +31*a(n+2) -14*a(n+3)) +a(n+2)*(+2*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Jan 17 2018
a(n+1) = (2/Pi) * Integral_{x = -1..1} (m + 4*x^2)^n*sqrt(1 - x^2) dx at m = 1. In general, the integral, qua sequence in n, gives the m-th binomial transform of the Catalan numbers. - Peter Bala, Jan 26 2020

A053121 Catalan triangle (with 0's) read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0

Views

Author

Keywords

Comments

Inverse lower triangular matrix of A049310(n,m) (coefficients of Chebyshev's S polynomials).
Walks with a wall: triangle of number of n-step walks from (0,0) to (n,m) where each step goes from (a,b) to (a+1,b+1) or (a+1,b-1) and the path stays in the nonnegative quadrant.
T(n,m) is the number of left factors of Dyck paths of length n ending at height m. Example: T(4,2)=3 because we have UDUU, UUDU, and UUUD, where U=(1,1) and D=(1,-1). (This is basically a different formulation of the previous - walks with a wall - property.) - Emeric Deutsch, Jun 16 2011
"The Catalan triangle is formed in the same manner as Pascal's triangle, except that no number may appear on the left of the vertical bar." [Conway and Smith]
G.f. for row polynomials p(n,x) := Sum_{m=0..n} (a(n,m)*x^m): c(z^2)/(1-x*z*c(z^2)). Row sums (x=1): A001405 (central binomial).
In the language of the Shapiro et al. reference such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. Ginv(x) of the m=0 column of the inverse of a given Bell-matrix (here A049310) is obtained from its g.f. of the m=0 column (here G(x)=1/(1+x^2)) by Ginv(x)=(f^{(-1)}(x))/x, with f(x) := x*G(x) and f^{(-1)}is the compositional inverse function of f (here one finds, with Ginv(0)=1, c(x^2)). See the Shapiro et al. reference.
Number of involutions of {1,2,...,n} that avoid the patterns 132 and have exactly k fixed points. Example: T(4,2)=3 because we have 2134, 4231 and 3214. Number of involutions of {1,2,...,n} that avoid the patterns 321 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. Number of involutions of {1,2,...,n} that avoid the patterns 213 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1432 and 4231. - Emeric Deutsch, Oct 12 2006
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (c(x^2),xc(x^2)), where c(x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Nov 25 2007
A053121^2 = triangle A145973. Convolved with A001405 = triangle A153585. - Gary W. Adamson, Dec 28 2008
By columns without the zeros, n-th row = A000108 convolved with itself n times; equivalent to A = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...), then n-th row = coefficients of A^(n+1). - Gary W. Adamson, May 13 2009
Triangle read by rows,product of A130595 and A064189 considered as infinite lower triangular arrays; A053121 = A130595*A064189 = B^(-1)*A097609*B where B = A007318. - Philippe Deléham, Dec 07 2009
From Mark Dols, Aug 17 2010: (Start)
As an upper right triangle, rows represent powers of 5-sqrt(24):
5 - sqrt(24)^1 = 0.101020514...
5 - sqrt(24)^2 = 0.010205144...
5 - sqrt(24)^3 = 0.001030928...
(Divided by sqrt(96) these powers give a decimal representation of the columns of A007318, with 1/sqrt(96) being the middle column.) (End)
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k (1,0)-steps. Example: T(5,3)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, Jun 01 2011
Let S(N,x) denote the N-th Chebyshev S-polynomial in x (see A049310, cf. [W. Lang]). Then x^n = sum_{k=0..n} T(n,k)*S(k,x). - L. Edson Jeffery, Sep 06 2012
This triangle a(n,m) appears also in the (unreduced) formula for the powers rho(N)^n for the algebraic number over the rationals rho(N) = 2*cos(Pi/N) = R(N, 2), the smallest diagonal/side ratio R in the regular N-gon:
rho(N)^n = sum(a(n,m)*R(N,m+1),m=0..n), n>=0, identical in N >= 1. R(N,j) = S(j-1, x=rho(N)) (Chebyshev S (A049310)). See a comment on this under A039599 (even powers) and A039598 (odd powers). Proof: see the Sep 06 2012 comment by L. Edson Jeffery, which follows from T(n,k) (called here a(n,k)) being the inverse of the Riordan triangle A049310. - Wolfdieter Lang, Sep 21 2013
The so-called A-sequence for this Riordan triangle of the Bell type (c(x^2), x*c(x^2)) (see comments above) is A(x) = 1 + x^2. This proves the recurrence given in the formula section by Henry Bottomley for a(n, m) = a(n-1, m-1) + a(n-1, m+1) for n>=1 and m>=1, with inputs. The Z-sequence for this Riordan triangle is Z(x) = x which proves the recurrence a(n,0) = a(n-1,1), n>=1, a(0,0) = 1. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. - Wolfdieter Lang, Sep 22 2013
Rows of the triangle describe decompositions of tensor powers of the standard (2-dimensional) representation of the Lie algebra sl(2) into irreducibles. Thus a(n,m) is the multiplicity of the m-th ((m+1)-dimensional) irreducible representation in the n-th tensor power of the standard one. - Mamuka Jibladze, May 26 2015
The Riordan row polynomials p(n, x) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*p(n, x) = (E_x + 1)*Sum_{j=0..n-1} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)*p(n-1-j, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle a(n, m) this entails a recurrence for the sequence of column m, given in the formula section. - Wolfdieter Lang, Aug 11 2017
From Roger Ford, Jan 22 2018: (Start)
For row n, the nonzero values represent the odd components (loops) formed by n+1 nonintersecting arches above and below the x-axis with the following constraints: The top has floor((n+3)/2) starting arches at position 1 and the next consecutive odd positions. All other starting top arches are in even positions. The bottom arches are a rainbow of arches. If the component=1 then the arch configuration is a semimeander solution.
Examples: For row 3 {0, 2, 0, 1} there are 3 arch configurations: 2 arch configurations have a component=1; 1 has a component=3. c=components, U=top arch starting in odd position, u=top arch starting in an even position, d=ending top arch:
.
top UuUdUddd c=3 top UdUuUddd c=1 top UdUdUudd c=1
/\ /\
//\\ / \
// \\ / /\ \ /\
// \\ / / \ \ / \
///\ /\\\ /\ / / /\ \ \ /\ /\ / /\ \
\\\ \/ /// \ \ \ \/ / / / \ \ \ \/ / / /
\\\ /// \ \ \ / / / \ \ \ / / /
\\\/// \ \ \/ / / \ \ \/ / /
\\// \ \ / / \ \ / /
\/ \ \/ / \ \/ /
\ / \ /
\/ \/
For row 4 {2, 0, 3, 0, 1} there are 6 arch configurations: 2 have a component=1; 3 have a component=3: 1 has a component=1. (End)

Examples

			Triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6  7  8  9 10 ...
  0:   1
  1:   0   1
  2:   1   0   1
  3:   0   2   0   1
  4:   2   0   3   0   1
  5:   0   5   0   4   0   1
  6:   5   0   9   0   5   0   1
  7:   0  14   0  14   0   6   0  1
  8:  14   0  28   0  20   0   7  0  1
  9:   0  42   0  48   0  27   0  8  0  1
  10: 42   0  90   0  75   0  35  0  9  0  1
  ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013)
E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3.
From _Paul Barry_, May 29 2009: (Start)
Production matrix is
  0, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Cf. A008315, A049310, A000108, A001405 (row sums), A145973, A153585, A108786, A037952. Another version: A008313. A039598 and A039599 without zeros, and odd and even numbered rows.
Variant without zero-diagonals: A033184 and with rows reversed: A009766.

Programs

  • Haskell
    a053121 n k = a053121_tabl !! n !! k
    a053121_row n = a053121_tabl !! n
    a053121_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1]
    -- Reinhard Zumkeller, Feb 24 2012
    
  • Maple
    T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006
    F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end;
    r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011
    A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1,
    procname(n-1,k-1)+procname(n-1,k+1))) end proc:
    seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
  • Mathematica
    a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *)
    T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n, m)=if(nCharles R Greathouse IV, Mar 09 2016
  • Sage
    def A053121_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1] + M[n-1,k+1]
        return M
    A053121_triangle(13) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
T(2*n+1,2*k+1) = A039598(n,k), T(2*n,2*k) = A039599(n,k). - Philippe Deléham, Apr 16 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Sum_{k=0..n} T(n,k)*A000045(k+1) = A098615(n). - Philippe Deléham, Feb 03 2012
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021

Extensions

Edited by N. J. A. Sloane, Jan 29 2011

A146559 Expansion of (1-x)/(1 - 2*x + 2*x^2).

Original entry on oeis.org

1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, 256, 0, -512, -1024, -1024, 0, 2048, 4096, 4096, 0, -8192, -16384, -16384, 0, 32768, 65536, 65536, 0, -131072, -262144, -262144, 0, 524288, 1048576, 1048576, 0, -2097152, -4194304
Offset: 0

Author

Philippe Deléham, Nov 01 2008

Keywords

Comments

Partial sums of this sequence give A099087. - Philippe Deléham, Dec 01 2008
From Philippe Deléham, Feb 13 2013, Feb 20 2013: (Start)
Terms of the sequence lie along the right edge of the triangle
(1)
(1)
2 (0)
2 (-2)
4 0 (-4)
4 -4 (-4)
8 0 -8 (0)
8 -8 -8 (8)
16 0 -16 0 (16)
16 -16 -16 16 (16)
32 0 -32 0 32 (0)
32 -32 -32 32 32 (-32)
64 0 -64 0 64 0 (-64)
...
Row sums of triangle are in A104597.
(1+i)^n = a(n) + A009545(n)*i where i = sqrt(-1). (End)
From Tom Copeland, Nov 08 2014: (Start)
This array is a member of a Catalan family (A091867) related by compositions of C(x)= (1-sqrt(1-4*x))/2, an o.g.f. for the Catalan numbers A000108, its inverse Cinv(x) = x(1-x), and the special linear fractional (Möbius) transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x.
O.g.f.: G(x) = P[P[Cinv(x),-1],-1] = P[Cinv(x),-2] = x*(1-x)/(1 - 2*x*(1-x)) = x*A146599(x).
Ginv(x) = C[P(x,2)] = (1 - sqrt(1-4*x/(1+2*x)))/2 = x*A126930(x).
G(-x) = -(x*(1+x) - 2*(x*(1+x))^2 + 2^2*(x*(1+x))^3 - ...), and so this array contains the -row sums of A030528 * Diag(1, (-2)^1, 2^2, (-2)^3, ...).
The inverse of -G(-x) is -C[-P(x,-2)]= (-1 + sqrt(1+4*x/(1-2*x)))/2, an o.g.f. for A210736 with a(0) set to zero there. (End)
{A146559, A009545} is the difference analog of {cos(x), sin(x)}. (Cf. the Shevelev link.) - Vladimir Shevelev, Jun 08 2017

Examples

			G.f. = 1 + x - 2*x^3 - 4*x^4 - 4*x^5 + 8*x^7 + 16*x^8 + 16*x^9 - 32*x^11 - 64*x^12 - ...
		

Programs

  • Magma
    I:=[1,1,0]; [n le 3 select I[n] else 2*Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    G(x):=exp(x)*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..44 ); # Zerinvary Lajos, Apr 05 2009
    seq(2^(n/2)*cos(Pi*n/4), n=0..44); # Peter Luschny, Oct 09 2021
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+2x^2),{x,0,50}],x] (* or *) LinearRecurrence[{2,-2},{1,1},50] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    Vec((1-x)/(1-2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • Python
    def A146559(n): return ((1, 1, 0, -2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
  • Sage
    def A146559():
        x, y = -1, 0
        while True:
            yield -x
            x, y = x - y, x + y
    a = A146559(); [next(a) for i in range(51)]  # Peter Luschny, Jul 11 2013
    
  • SageMath
    def A146559(n): return 2^(n/2)*chebyshev_T(n, 1/sqrt(2))
    [A146559(n) for n in range(51)] # G. C. Greubel, Apr 17 2023
    

Formula

a(0) = 1, a(1) = 1, a(n) = 2*a(n-1) - 2*a(n-2) for n>1.
a(n) = Sum_{k=0..n} A124182(n,k)*(-2)^(n-k).
a(n) = Sum_{k=0..n} A098158(n,k)*(-1)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (-1)^n*A009116(n). - Philippe Deléham, Dec 01 2008
E.g.f.: exp(x)*cos(x). - Zerinvary Lajos, Apr 05 2009
E.g.f.: cos(x)*exp(x) = 1+x/(G(0)-x) where G(k)=4*k+1+x+(x^2)*(4*k+1)/((2*k+1)*(4*k+3)-(x^2)-x*(2*k+1)*(4*k+3)/( 2*k+2+x-x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011
a(n) = Re( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: 1 / (1 - x / (1 + x / (1 - 2*x))) = 1 + x / (1 + 2*x^2 / (1 - 2*x)). - Michael Somos, Jan 03 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(m+k) = a(m)*a(k) - A009545(m)*A009545(k). - Vladimir Shevelev, Jun 08 2017
a(n) = 2^(n/2)*cos(Pi*n/4). - Peter Luschny, Oct 09 2021
a(n) = 2^(n/2)*ChebyshevT(n, 1/sqrt(2)). - G. C. Greubel, Apr 17 2023
From Chai Wah Wu, Feb 15 2024: (Start)
a(n) = Sum_{n=0..floor(n/2)} binomial(n,2j)*(-1)^j = A121625(n)/n^n.
a(n) = 0 if and only if n == 2 mod 4.
(End)

A064613 Second binomial transform of the Catalan numbers.

Original entry on oeis.org

1, 3, 10, 37, 150, 654, 3012, 14445, 71398, 361114, 1859628, 9716194, 51373180, 274352316, 1477635912, 8016865533, 43773564294, 240356635170, 1326359740956, 7351846397334, 40913414754324, 228508350629892
Offset: 0

Author

Karol A. Penson, Sep 24 2001

Keywords

Comments

Exponential convolution of Catalan numbers and powers of 2. - Vladeta Jovovic, Dec 03 2004
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 4 colors. Example: a(3)=37 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011
a(n) is the number of Schroeder paths of semilength n in which the (2,0)-steps come in 2 colors and having no (2,0)-steps at levels 1,3,5,... - José Luis Ramírez Ramírez, Mar 30 2013
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t)=x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). (Cf A126930.)
O.g.f.: G(x) = C[P[P(x,-1),-1]] = C[P(x,-2)] = (1-sqrt(1-4*x/(1-2*x)))/2 = x*A064613(x).
Ginv(x) = Pinv[Cinv(x),-2] = P[Cinv(x),2] = x(1-x)/[1+2x(1-x)] = (x-x^2)/[1+2(x-x^2)] = x - 3 x^2 + 8 x^3 - ... is -A155020(-x) ignoring first term there. (Cf. A146559, A125145.)(End)

Crossrefs

Programs

  • Magma
    I:=[3,10]; [1] cat [n le 2 select I[n] else ((8*n-2)*Self(n-1)-(12*n-12)*Self(n-2))div (n+1): n in [1..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    CoefficientList[Series[(1-Sqrt[(1-6*x)/(1-2*x)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2013 *)
    a[n_] := 2^n Hypergeometric2F1[1/2, -n, 2, -2];
    Array[a, 22, 0] (* Peter Luschny, Jan 27 2020 *)
  • PARI
    x='x+O('x^66); Vec((1-sqrt((1-6*x)/(1-2*x)))/(2*x)) /* Joerg Arndt, Mar 31 2013 */
    

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)*2^(n-k)/(k+1).
a(n) = 2^n*hypergeom([1/2, -n], [2], -2).
G.f.: (1-sqrt((1-6*x)/(1-2*x)))/(2*x). - Vladeta Jovovic, May 03 2003
With offset 1: a(1) = 1, a(n) = 2^(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence (n+1)*a(n) = (8*n-2)*a(n-1) - (12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Dec 03 2004
Inverse binomial transform of A104455. - Philippe Deléham, Nov 30 2007
G.f.: 1/(1-3*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). - Paul Barry, Jul 02 2009
a(n) = Sum_{0<=k<=n} A052179(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:
3, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
a(n) ~ 2^(n-3/2)*3^(n+3/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013
G.f. A(x) satisfies: A(x) = 1/(1 - 2*x) + x * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

Extensions

Name clarified using a comment of Vladeta Jovovic by Peter Bala, Jan 27 2020

A091867 Triangle read by rows: T(n,k) = number of Dyck paths of semilength n having k peaks at odd height.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 3, 4, 6, 0, 1, 6, 15, 10, 10, 0, 1, 15, 36, 45, 20, 15, 0, 1, 36, 105, 126, 105, 35, 21, 0, 1, 91, 288, 420, 336, 210, 56, 28, 0, 1, 232, 819, 1296, 1260, 756, 378, 84, 36, 0, 1, 603, 2320, 4095, 4320, 3150, 1512, 630, 120, 45, 0, 1, 1585, 6633, 12760, 15015, 11880, 6930, 2772, 990, 165, 55, 0, 1
Offset: 0

Author

Emeric Deutsch, Mar 10 2004

Keywords

Comments

Number of ordered trees with n edges having k leaves at odd height. Row sums are the Catalan numbers (A000108). T(n,0)=A005043(n). Sum_{k=0..n} k*T(n,k) = binomial(2n-2,n-1).
T(n,k)=number of Dyck paths of semilength n and having k ascents of length 1 (an ascent is a maximal string of consecutive up steps). Example: T(4,2)=6 because we have UdUduud, UduuddUd, uuddUdUd, uudUdUdd, UduudUdd and uudUddUd (the ascents of length 1 are indicated by U instead of u).
T(n,k) is the number of Łukasiewicz paths of length n having k level steps (i.e., (1,0)). A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(4,1)=4 because we have HU(2)DD, U(2)HDD, U(2)DHD and U(2)DDH, where H=(1,0), U(1,1), U(2)=(1,2) and D=(1,-1). - Emeric Deutsch, Jan 06 2005
T(n,k) = number of noncrossing partitions of [n] containing k singleton blocks. Also, T(n,k) = number of noncrossing partitions of [n] containing k adjacencies. An adjacency is an occurrence of 2 consecutive integers in the same block (here 1 and n are considered consecutive). In fact, the statistics # singletons and # adjacencies have a symmetric joint distribution.
Exponential Riordan array [e^x*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011
T(n,k) is the number of ordered trees having n edges and exactly k nodes with one child. - Geoffrey Critzer, Feb 25 2013
From Tom Copeland, Nov 04 2014: (Start)
Summing the coeff. of the partitions in A134264 for a Lagrange inversion formula (see also A249548) containing (h_1)^k = (1')^k gives this triangle, so this array's o.g.f. H(x,t) = x + t * x^2 + (1 + t^2) * x^3 ... is the inverse of the o.g.f. of A104597 with a sign change, i.e., H^(-1)(x,t) = (x-x^2) / [1 + (t-1)(x-x^2)] = Cinv(x)/[1 + (t-1)Cinv(x)] = P[Cinv(x),t-1] where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108, and P(x,t) = x/(1+t*x) with inverse Pinv(x,t) = -P(-x,t) = x/(1-t*x). Therefore,
O.g.f.: H(x,t) = C[Pinv(x,t-1)] = C[P(x,1-t)] = C[x/(1-(t-1)x)] = {1-sqrt[1-4*x/(1-(t-1)x)]}/2 (for A091867). Reprising,
Inverse O.g.f.: H^(-1)(x,t) = x*(1-x) / [1 + (t-1)x(1-x)] = P[Cinv(x),t-1].
From general arguments in A134264, the row polynomials are an Appell sequence with lowering operator d/dt, having the umbral property (p(.,t)+a)^n=p(n,t+a) with e.g.f. = e^(x*t)/w(x), where 1/w(x)= e.g.f. of first column for the Motzkin numbers in A005043. (Mislabeled argument corrected on Jan 31 2016.)
Cf. A124644 (t-shifted polynomials), A026378 (t=-4), A001700 (t=-3), A005773 (t=-2), A126930 (t=-1) and A210736 (t=-1, a(0)=0, unsigned), A005043 (t=0), A000108 (t=1), A007317 (t=2), A064613 (t=3), A104455 (t=4), A030528 (for inverses).
(End)
The sequence of binomial transforms A126930, A005043, A000108, ... in the above comment appears in A126930 and the link therein to a paper by F. Fite et al. on page 42. - Tom Copeland, Jul 23 2016

Examples

			T(4,2)=6 because we have (ud)uu(ud)dd, uu(ud)dd(ud), uu(ud)(ud)dd, (ud)(ud)uudd, (ud)uudd(ud) and uudd(ud)(ud) (here u=(1,1), d=(1,-1) and the peaks at odd height are shown between parentheses).
Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   1,   3,   0,   1;
   3,   4,   6,   0,  1;
   6,  15,  10,  10,  0,  1;
  15,  36,  45,  20, 15,  0, 1;
  36, 105, 126, 105, 35, 21, 0, 1;
  ...
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison and Wesley, 1996, page 254 (first edition)

Programs

  • Maple
    T := proc(n,k) if k>n then 0 elif k=n then 1 else (binomial(n+1,k)/(n+1))*sum(binomial(n+1-k,j)*binomial(n-k-j-1,j-1),j=1..floor((n-k)/2)) fi end: seq(seq(T(n,k),k=0..n),n=0..12);
    T := (n,k) -> (-1)^(n+k)*binomial(n,k)*hypergeom([-n+k,1/2],[2],4): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Jul 27 2016
    # alternative Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,
          `if`(y>0, b(x-1, y-1, 0)*z^irem(t*y, 2), 0)+
          `if`(y (p-> seq(coeff(p, z, i), i=0..n))(b(2*n, 0$2)):
    seq(T(n), n=0..16);  # Alois P. Heinz, May 12 2017
  • Mathematica
    nn=10;cy = ( 1 + x - x y - ( -4x(1+x-x y) + (-1 -x + x y)^2)^(1/2))/(2(1+x-x y)); Drop[CoefficientList[Series[cy,{x,0,nn}],{x,y}],1]//Grid  (* Geoffrey Critzer, Feb 25 2013 *)
    Table[Which[k == n, 1, k > n, 0, True, (Binomial[n + 1, k]/(n + 1)) Sum[Binomial[n + 1 - k, j] Binomial[n - k - j - 1, j - 1], {j, Floor[(n - k)/2]}]], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 25 2016 *)

Formula

T(n, k) = [binomial(n+1, k)/(n+1)]*Sum_{j=1..floor((n-k)/2)} binomial(n+1-k, j)*binomial(n-k-j-1, j-1) for kn. G.f.=G=G(t, z) satisfies z(1+z-tz)G^2-(1+z-tz)G+1=0. T(n, k)=r(n-k)*binomial(n, k), where r(n)=A005043(n) are the Riordan numbers.
G.f.: 1/(1-xy-x^2/(1-x-xy-x^2/(1-x-xy-x^2/(1-x-xy-x^2/(1-... (continued fraction). - Paul Barry, Aug 03 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n), A064613(n), A104455(n) for x = -1,0,1,2,3,4 respectively. - Philippe Deléham, Dec 03 2009
Sum_{k=0..n} (-1)^(n-k)*T(n,k)*x^k = A168491(n), A099323(n+1), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Dec 03 2009
E.g.f.: e^(x+xy)*(Bessel_I(0,2x)-Bessel_I(1,2x)). - Paul Barry, Mar 10 2010
From Tom Copeland, Nov 06 2014: (Start)
O.g.f.: H(x,t) = {1-sqrt[1-4x/(1-(t-1)x)]}/2 (shifted index, as given in Copeland's comment, see comp. inverse there).
H(x,t)= x / [1-(C.+(t-1))x] = Sum_{n>=1} (C.+ (t-1))^(n-1)*x^n umbrally, e.g., (a.+b.)^2 = a_0*b_2 + 2 a_1*b1_+ a_0*b_2, where (C.)^n = C_n are the Catalan numbers (1,1,2,5,14,..) of A000108.
This shows directly that the lowering operator for the polynomials is D=d/dt, i.e., D p(n,t)= D(C. + (t-1))^n = n * (C. + (t-1))^(n-1) = n*p(n-1,t), so that the polynomials form an Appell sequence, and that p(n,0) gives a Motzkin sum, or Riordan, number A005043.
(End)
T(n,k) = (-1)^(n+k)*binomial(n,k)*hypergeom([k-n,1/2],[2],4). - Peter Luschny, Jul 27 2016

A098474 Triangle read by rows, T(n,k) = C(n,k)*C(2*k,k)/(k+1), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 14, 1, 5, 20, 50, 70, 42, 1, 6, 30, 100, 210, 252, 132, 1, 7, 42, 175, 490, 882, 924, 429, 1, 8, 56, 280, 980, 2352, 3696, 3432, 1430, 1, 9, 72, 420, 1764, 5292, 11088, 15444, 12870, 4862, 1, 10, 90, 600, 2940, 10584, 27720
Offset: 0

Author

Paul Barry, Sep 09 2004

Keywords

Comments

A Catalan scaled binomial matrix.
From Philippe Deléham, Sep 01 2005: (Start)
Table U(n,k), k >= 0, n >= 0, read by antidiagonals, begins:
row k = 0: 1, 1, 2, 5, 14, ... is A000108
row k = 1: 1, 2, 6, 20, 70, ... is A000984
row k = 2: 1, 3, 12, 50, 280, ... is A007854
row k = 3: 1, 4, 20, 104, 548, ... is A076035
row k = 4: 1, 5, 30, 185, 1150, ... is A076036
G.f. for row k: 1/(1-(k+1)*x*C(x)) where C(x) is the g.f. = for Catalan numbers A000108.
U(n,k) = Sum_{j=0..n} A106566(n,j)*(k+1)^j. (End)
This sequence gives the coefficients (increasing powers of x) of the Jensen polynomials for the Catalan sequence A000108 of degree n and shift 0. For the definition of Jensen polynomials for a sequence see a comment in A094436. - Wolfdieter Lang, Jun 25 2019

Examples

			Rows begin:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   5;
  1, 4, 12,  20,  14;
  1, 5, 20,  50,  70,  42;
  1, 6, 30, 100, 210, 252, 132;
  ...
Row 3: t*(1 - 3*t + 6*t^2 - 5*t^3)/(1 - 4*t)^(9/2) = 1/2*Sum_{k >= 1} k*(k+1)*(k+2)*(k+3)/4!*binomial(2*k,k)*t^k. - _Peter Bala_, Jun 13 2016
		

Crossrefs

Row sums are A007317.
Antidiagonal sums are A090344.
Principal diagonal is A000108.
Mirror image of A124644.

Programs

  • Maple
    p := proc(n) option remember; if n = 0 then 1 else normal((x*(1 + 4*x)*diff(p(n-1, x), x) + (2*x + n + 1)*p(n-1, x))/(n + 1)) fi end:
    row := n -> local k; seq(coeff(p(n), x, k), k = 0..n):
    for n from 0 to 6 do row(n) od;  # Peter Luschny, Jun 21 2023
  • Mathematica
    Table[Binomial[n, k] Binomial[2 k, k]/(k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[(-1)^k*CatalanNumber[k] Pochhammer[-n, k]/k!, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Python
    from functools import cache
    @cache
    def A098474row(n: int) -> list[int]:
        if n == 0: return [1]
        a = A098474row(n - 1) + [0]
        row = [0] * (n + 1)
        row[0] = 1; row[1] = n
        for k in range(2, n + 1):
            row[k] = (a[k] * (n + k + 1) + a[k - 1] * (4 * k - 2)) // (n + 1)
        return row  # Peter Luschny, Jun 22 2023
  • Sage
    def A098474(n,k):
        return (-1)^k*catalan_number(k)*rising_factorial(-n,k)/factorial(k)
    for n in range(7): [A098474(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015
    

Formula

G.f.: 2/(1-x+(1-x-4*x*y)^(1/2)). - Vladeta Jovovic, Sep 11 2004
E.g.f.: exp(x*(1+2*y))*(BesselI(0, 2*x*y)-BesselI(1, 2*x*y)). - Vladeta Jovovic, Sep 11 2004
G.f.: 1/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
Sum_{k=0..n} T(n,k)*x^(n-k) = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Dec 12 2009
T(n,k) = (-1)^k*Catalan(k)*Pochhammer(-n,k)/k!. - Peter Luschny, Feb 05 2015
O.g.f.: [1 - sqrt(1-4tx/(1-x))]/(2tx) = 1 + (1+t) x + (1+2t+2t^2) x^2 + (1+3t+6t^2+5t^3) x^3 + ... , generating the polynomials of this entry, reverse of A124644. See A011973 for a derivation and the inverse o.g.f., connected to the Fibonacci, Chebyshev, and Motzkin polynomials. See also A267633. - Tom Copeland, Jan 25 2016
From Peter Bala, Jun 13 2016: (Start)
The o.g.f. F(x,t) = ( 1 - sqrt(1 - 4*t*x/(1 - x)) )/(2*t*x) satisfies the partial differential equation d/dx(x*(1 - x)*F) - x*t*(1 + 4*t)*dF/dt - 2*x*t*F = 1. This gives a recurrence for the row polynomials: (n + 2)*R(n+1,t) = t*(1 + 4*t)*R'(n,t) + (2*t + n + 2)*R(n,t), where the prime ' indicates differentiation with respect to t.
Equivalently, setting Q(n,t) = t^(n+2)*R(n,-t)/(1 - 4*t)^(n + 3/2) we have t^2*d/dt(Q(n,t)) = (n + 2)*Q(n+1,t).
This leads to the following expansions:
Q(0,t) = (1/2)*Sum_{k >= 1} k*binomial(2*k,k)*t^(k+1)
Q(1,t) = (1/2)*Sum_{k >= 1} k*(k+1)/2!*binomial(2*k,k)*t^(k+2)
Q(2,t) = (1/2)*Sum_{k >= 1} k*(k+1)*(k+2)/3!*binomial(2*k,k) *t^(k+3) and so on. (End)
Sum_{k=0..n} T(n,k)*x^k = A007317(n+1), A162326(n+1), A337167(n) for x = 1, 2, 3 respectively. - Sergii Voloshyn, Mar 31 2022

Extensions

New name using a formula of Paul Barry by Peter Luschny, Feb 05 2015

A210736 Expansion of (1 + sqrt( (1 + 2*x) / (1 - 2*x))) / 2 in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110, 2333606220, 4537567650
Offset: 0

Author

Michael Somos, May 10 2012

Keywords

Comments

Hankel transform is period 4 sequence [ 1, 0, -1, 0, ...] A056594 and the Hankel transform of sequence omitting a(0) is the all 1s sequence A000012. This is the unique sequence with that property.
Series reversion of x*A(x) apparently yields x*A036765(-x). - R. J. Mathar, Sep 24 2012
a(n) is the number of length n words on {-1,1} such that the sum of any of its prefixes is always positive. Cf. A001405 where the sum of all prefixes is nonnegative. - Geoffrey Critzer, Jul 08 2013

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 20*x^7 + 35*x^8 + 70*x^9 + ...
		

Crossrefs

Essentially the same as A001405.

Programs

  • Mathematica
    nn=36; d=(1-(1-4x^2)^(1/2))/(2x^2);CoefficientList[Series[1/(1-x d),{x,0,nn}],x] (* Geoffrey Critzer, Jul 08 2013 *)
    CoefficientList[Series[2 x / (-1 + 2 x + Sqrt[1 - 4 x^2]), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, binomial( n - 1, (n - 1)\2))};
    
  • PARI
    {a(n) = polcoeff( (1 + sqrt( (1 + 2*x) / (1 - 2*x) + x * O(x^n))) / 2, n)};

Formula

G.f.: 2 * x / (-1 + 2*x + sqrt(1 - 4*x^2)).
G.f. A(x) satisfies A(x) = A(x)^2 - x / (1 - 2*x).
G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 / (1 - x).
G.f. A(x) satisfies A(1/3) = (1 + sqrt(5))/2.
G.f. A(x) = 1 + x / (1 - 2*x + x / A(x)).
G.f. A(x) = 1 + x / (1 - x / (1 - x / (1 + x / A(x)))).
G.f. A(x) = 1 + x * A001405(x). a(n+1) = A001405(n).
Convolution inverse is A210628. Partial sums is A072100.
Binomial transform with offset 1 is A211278 with offset 1. a(n+2) * a(n) - a(n+1)^2 = A138350(n-1).
a(n) = (-1)^floor(n/2)*hypergeom2F1([1-n, -n],[1],-1). - Peter Luschny, Sep 01 2012
D-finite with recurrence: n*a(n) -2*a(n-1) +4*(2-n)*a(n-2)=0. - R. J. Mathar, Sep 14 2012
G.f. A(x) = 1 / (1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...)))). - Michael Somos, Jan 02 2013
G.f.: 1/(1 - x*C(x)) where C(x) is the o.g.f. for A126120. - Geoffrey Critzer, Jul 08 2013
a(n) ~ 2^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 01 2014
G.f.: A(x) = 1 - x/(- 1 + x/A(-x)). - Arkadiusz Wesolowski, Feb 28 2014
From Tom Copeland, Nov 07 2014: (Start)
Setting a(0)=0 here, we have a signed version in A126930 and
O.g.f. G(x)=[-1+sqrt(1+4*x/(1-2x))]/2 = x + x^2 + 2 x^3 + ... = -C[-P(P(x,-1),-1)]= -C[-P(x,-2)] where C(x)= [1-sqrt(1-4*x)]/2= x + x^2 + 2 x^3 + ... = A000108(x) with inverse Cinv(x)=x*(1-x), and P(x,t)= x/(1 + t*x) with inverse P(x,-t).
These types of arrays are from linear fractional transformations of C(x). See A091867.
Ginv(x) = P[-Cinv(-x),2] = x*(1+x)/(1+2*x*(1-x))= (x+x^2)/(1+2(x+x^2)) (see A146559). (End)
Showing 1-10 of 14 results. Next