A024036
a(n) = 4^n - 1.
Original entry on oeis.org
0, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663, 281474976710655
Offset: 0
G.f. = 3*x + 15*x^2 + 63*x^3 + 255*x^4 + 1023*x^5 + 4095*x^6 + ...
- Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Felix Fröhlich, Table of n, a(n) for n = 0..99
- Alexander V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, Symmetry, Integrability and Geometry: Methods and Applications, Vol. 15 (2019), 046, 53 pages; arXiv preprint, arXiv:1809.00122 [math.CA], 2018-2019.
- Eric Weisstein's World of Mathematics, Cyclomatic Number.
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Cf.
A000051,
A000120,
A000225,
A000302,
A002001,
A002063,
A002193,
A002450,
A005057,
A010503,
A010532,
A010541,
A010767,
A015521,
A020988,
A027637 (partial products),
A078904 (partial sums),
A079978,
A080674,
A164346 (first differences),
A178789,
A179857,
A248721.
-
a024036 = (subtract 1) . a000302
a024036_list = iterate ((+ 3) . (* 4)) 0
-- Reinhard Zumkeller, Oct 03 2012
-
A024036:=n->4^n-1; seq(A024036(n), n=0..30); # Wesley Ivan Hurt, Apr 04 2014
-
Array[4^# - 1 &, 50, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
(* Start from Eric W. Weisstein, Sep 19 2017 *)
Table[4^n - 1, {n, 0, 20}]
4^Range[0, 20] - 1
LinearRecurrence[{5, -4}, {0, 3}, 20]
CoefficientList[Series[3 x/(1 - 5 x + 4 x^2), {x, 0, 20}], x]
(* End *)
-
for(n=0, 100, print1(4^n-1, ", ")) \\ Felix Fröhlich, Jul 04 2014
-
[gaussian_binomial(2*n,1, 2) for n in range(21)] # Zerinvary Lajos, May 28 2009
-
[stirling_number2(2*n+1, 2) for n in range(21)] # Zerinvary Lajos, Nov 26 2009
A155588
a(n) = 5^n + 2^n - 1^n.
Original entry on oeis.org
1, 6, 28, 132, 640, 3156, 15688, 78252, 390880, 1953636, 9766648, 48830172, 244144720, 1220711316, 6103532008, 30517610892, 152587956160, 762939584196, 3814697527768, 19073486852412, 95367432689200, 476837160300276
Offset: 0
A155596
a(n) = 5^n - 2^n + 1^n.
Original entry on oeis.org
1, 4, 22, 118, 610, 3094, 15562, 77998, 390370, 1952614, 9764602, 48826078, 244136530, 1220694934, 6103499242, 30517545358, 152587825090, 762939322054, 3814697003482, 19073485803838, 95367430592050, 476837156105974
Offset: 0
-
Table[5^n-2^n+1,{n,0,30}] (* or *) LinearRecurrence[{8,-17,10},{1,4,22},30] (* Harvey P. Dale, Sep 11 2019 *)
-
a(n)=5^n-2^n+1 \\ Charles R Greathouse IV, Sep 24 2015
A016127
Expansion of g.f. 1/((1-2*x)*(1-5*x)).
Original entry on oeis.org
1, 7, 39, 203, 1031, 5187, 25999, 130123, 650871, 3254867, 16275359, 81378843, 406898311, 2034499747, 10172515119, 50862608363, 254313107351, 1271565667827, 6357828601279, 31789143530683, 158945718701991, 794728595607107, 3973642982229839, 19868214919537803, 99341074614466231
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- Index entries for linear recurrences with constant coefficients, signature (7,-10).
-
[(5^(n+1)-2^(n+1))/3: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
-
Join[{a=1,b=7},Table[c=7*b-10*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
CoefficientList[Series[1/((1 - 2 x) (1 - 5 x)), {x, 0, 19}], x] (* Michael De Vlieger, Jan 31 2018 *)
LinearRecurrence[{7,-10},{1,7},30] (* Harvey P. Dale, Aug 18 2020 *)
-
Vec(1/((1-2*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
[lucas_number1(n,7,10) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
-
[(5^n - 2^n)/3 for n in range(1,21)] # Zerinvary Lajos, Jun 05 2009
A155590
a(n) = 7^n + 2^n - 1.
Original entry on oeis.org
1, 8, 52, 350, 2416, 16838, 117712, 823670, 5765056, 40354118, 282476272, 1977328790, 13841291296, 96889018598, 678223089232, 4747561542710, 33232930635136, 232630514118278, 1628413598172592, 11398895185897430, 79792266298660576, 558545864085381158, 3909821048587182352
Offset: 0
Original entry on oeis.org
1, 9, 67, 519, 4111, 32799, 262207, 2097279, 16777471, 134218239, 1073742847, 8589936639, 68719480831, 549755822079, 4398046527487, 35184372121599, 281474976776191, 2251799813816319, 18014398509744127, 144115188076380159
Offset: 0
-
Table[8^n+2^n-1^n,{n,0,30}] (* or *) LinearRecurrence[{11,-26,16},{1,9,67},30] (* Harvey P. Dale, Jul 09 2017 *)
-
a(n)=8^n+2^n-1 \\ Charles R Greathouse IV, Jun 11 2015
A155593
a(n) = 9^n + 2^n - 1.
Original entry on oeis.org
1, 10, 84, 736, 6576, 59080, 531504, 4783096, 43046976, 387421000, 3486785424, 31381061656, 282429540576, 2541865836520, 22876792471344, 205891132127416, 1853020188917376, 16677181699797640, 150094635297261264
Offset: 0
-
Table[9^n+2^n-1,{n,0,30}] (* or *) LinearRecurrence[{12,-29,18},{1,10,84},30] (* Harvey P. Dale, Sep 09 2022 *)
-
a(n)=9^n+2^n-1^n \\ Charles R Greathouse IV, Jun 11 2015
Original entry on oeis.org
1, 11, 103, 1007, 10015, 100031, 1000063, 10000127, 100000255, 1000000511, 10000001023, 100000002047, 1000000004095, 10000000008191, 100000000016383, 1000000000032767, 10000000000065535, 100000000000131071
Offset: 0
A225466
Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 21, 9, 8, 117, 135, 27, 16, 609, 1431, 702, 81, 32, 3093, 13275, 12015, 3240, 243, 64, 15561, 115479, 171990, 81405, 13851, 729, 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187, 256, 390369, 7998111, 27533142, 29893941, 13121514, 2561706
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 2, 3,
[2] 4, 21, 9,
[3] 8, 117, 135, 27,
[4] 16, 609, 1431, 702, 81,
[5] 32, 3093, 13275, 12015, 3240, 243,
[6] 64, 15561, 115479, 171990, 81405, 13851, 729,
[7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.
Boas-Buck recurrence for column k = 2, and n = 4: T(4,2) = (1/2)*(2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)
- Vincenzo Librandi, Rows n = 0..50, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Peter Luschny, Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.
Cf.
A000079,
A000244,
A005057,
A016127,
A016297,
A025999,
A006232/
A006233,
A225117,
A225472,
A225468,
A282629,
A284862/
A284863,
A284864,
A284865.
-
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 10 2017
-
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_SS(n, k, m):
return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/ factorial(k)
def A225466(n): return SF_SS(n, k, 3)
A155589
a(n) = 6^n + 2^n - 1.
Original entry on oeis.org
1, 7, 39, 223, 1311, 7807, 46719, 280063, 1679871, 10078207, 60467199, 362799103, 2176786431, 13060702207, 78364180479, 470185017343, 2821109972991, 16926659575807, 101559956930559, 609359740534783, 3656158441111551, 21936950642475007, 131621703846461439
Offset: 0
Showing 1-10 of 15 results.
Comments