A005449 Second pentagonal numbers: a(n) = n*(3*n + 1)/2.
0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
Offset: 0
Examples
From _Omar E. Pol_, Aug 22 2011: (Start) Illustration of initial terms: O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O - --- ----- ------- --------- 2 7 15 26 40 (End)
References
- Henri Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, 2000.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- A. O. L. Atkin and F. Morain, Elliptic Curves and Primality Proving, Math. Comp., Vol. 61, No. 203 (1993), pp. 29-68.
- Charles H. Conley and Valentin Ovsienko, Quiddities of polygon dissections and the Conway-Coxeter frieze equation, arXiv:2107.01234 [math.CO], 2021.
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium, Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 1780: I, pp. 56-75.
- Leonhard Euler, Observatio de summis divisorum, Novi Commentarii academiae scientiarum Petropolitanae, Vol. 5, pp. 59-74.
- Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 8.
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067.
- D. Suprijanto and I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, No. 45 (2014), pp. 2211-2217.
- Martin Wohlgemuth, Pentagon, Kartenhaus und Summenzerlegung.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, this sequence, A045943, A115067, A140090, A140091, A059845, A140672-A140675, A151542.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=3).
Cf. numbers of the form n*((2*k+1)*n+1)/2 listed in A022289 (this sequence is the case k=1).
Programs
-
Magma
[n*(3*n + 1) / 2: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Maple
A005449:=n->n*(3*n + 1)/2; seq(A005449(k), k=0..100); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
Table[n (3 n + 1)/2, {n, 0, 100}] (* Zak Seidov, Jan 31 2012 *)
-
PARI
{a(n) = n * (3*n + 1) / 2} /* Michael Somos, Jul 18 2003 */
Formula
a(n) = A110449(n, 1) for n>0.
G.f.: x*(2+x)/(1-x)^3. E.g.f.: exp(x)*(2*x + 3*x^2/2). a(n) = n*(3*n + 1)/2. a(-n) = A000326(n). - Michael Somos, Jul 18 2003
a(n) = Sum_{j=1..n} n+j. - Zerinvary Lajos, Sep 12 2006
a(n) = A126890(n,n). - Reinhard Zumkeller, Dec 30 2006
a(n) = 2*C(3*n,4)/C(3*n,2), n>=1. - Zerinvary Lajos, Jan 02 2007
a(n) = a(n-1) + 3*n - 1 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A129267(n+5,n). - Philippe Deléham, Dec 21 2011
a(n) = A130518(3*n+1). - Philippe Deléham, Mar 26 2013
a(n) = (12/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Vladimir Kruchinin, Jun 04 2013
a(n) = floor(n/(1-exp(-2/(3*n)))) for n>0. - Richard R. Forberg, Jun 22 2013
a(n) = Sum_{i=1..n} (3*i - 1) for n >= 1. - Wesley Ivan Hurt, Oct 11 2013 [Corrected by Rémi Guillaume, Oct 24 2024]
a(n) = (A000292(6*n+k+1)-A000292(k))/(6*n+1) - A000217(3*n+k+1), for any k >= 0. - Manfred Arens, Apr 26 2015
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 3*log(3) = 0.89036376976145307522... . - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 4*log(2) - 6. - Amiram Eldar, Jan 18 2021
From Klaus Purath, May 13 2021: (Start)
Partial sums of A016789 for n > 0.
a(n) = 3*n^2 - A000326(n).
a(n) = A000326(n) + n.
From Klaus Purath, Jul 14 2021: (Start)
b^2 = 24*a(n) + 1 we get by b^2 = (a(n+1) - a(n-1))^2 = (a(2*n)/n)^2.
a(2*n) = n*(a(n+1) - a(n-1)), n > 0.
a(2*n+1) = n*(a(n+1) - a(n)). (End)
A generalization of Lajos' formula, dated Sep 12 2006, follows. Let SP(k,n) = the n-th second k-gonal number. Then SP(2k+1,n) = Sum_{j=1..n} (k-1)*n+j+k-2. - Charlie Marion, Jul 13 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
For integer m, (6*m + 1)^2*a(n) + a(m) = a((6*m+1)*n + m). - Peter Bala, Jan 09 2025
Comments