A007283 a(n) = 3*2^n.
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
References
- Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
- T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
- Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. Bezdek and Tudor Zamfirescu, A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, International Mathematics Research Notices 1994.3 (1994): 129-139.
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Tomislav Došlić, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
- John Elias, Illustration: 2^n+1 hexagram perimeters
- Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Tanya Khovanova, Recursive Sequences
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
- Edwin Soedarmadji, Latin Hypercubes and MDS Codes, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239
- D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Programs
-
Haskell
a007283 = (* 3) . (2 ^) a007283_list = iterate (* 2) 3 -- Reinhard Zumkeller, Mar 18 2012, Feb 20 2012
-
Magma
[3*2^n: n in [0..30]]; // Vincenzo Librandi, May 18 2011
-
Maple
A007283:=n->3*2^n; seq(A007283(n), n=0..50); # Wesley Ivan Hurt, Dec 03 2013
-
Mathematica
Table[3(2^n), {n, 0, 32}] (* Alonso del Arte, Mar 24 2011 *)
-
Maxima
A007283(n):=3*2^n$ makelist(A007283(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
-
PARI
a(n)=3*2^n
-
PARI
a(n)=3<
Charles R Greathouse IV, Oct 10 2012 -
Python
def A007283(n): return 3<
Chai Wah Wu, Feb 14 2023 -
Scala
(List.fill(40)(2: BigInt)).scanLeft(1: BigInt)( * ).map(3 * ) // _Alonso del Arte, Nov 28 2019
Formula
G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020
Comments