cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A061152 Expansion of Product_{n>=1} (1+x^n)^prime(n).

Original entry on oeis.org

1, 2, 4, 11, 23, 51, 107, 216, 430, 839, 1614, 3046, 5684, 10465, 19046, 34321, 61225, 108245, 189779, 330093, 569916, 977139, 1664304, 2817039, 4740000, 7930740, 13198108, 21851556, 36001483, 59035979, 96373100, 156644241, 253550911
Offset: 0

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Crossrefs

Formula

a(n) = (1/n) * Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*d*prime(d).

A275700 a(n) = Product_{d|n} prime(d).

Original entry on oeis.org

2, 6, 10, 42, 22, 390, 34, 798, 230, 1914, 62, 101010, 82, 4386, 5170, 42294, 118, 547170, 134, 951258, 12410, 14694, 166, 170807910, 2134, 24846, 23690, 3285114, 218, 660741510, 254, 5540514, 42470, 49206, 55726, 21399271530, 314, 65526, 68470, 3126785046, 358
Offset: 1

Views

Author

Jaroslav Krizek, Aug 05 2016

Keywords

Comments

a(n) mod n = 0 for n: 1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, ...

Examples

			a(4) = 42 because the divisors of 4 are: 1, 2 and 4; and prime(1) * prime(2) * prime(4) = 2 * 3 * 7 = 42.
		

Crossrefs

Cf. A007445 (Sum_{d|n} prime(d)).
A version for binary indices is A034729.
Partitions of this type are counted by A054973, strict case of A371284.
The sorted version is A371283, squarefree case of A371288.
These numbers have products A371286, unsorted version A371285.
A000005 counts divisors, row-lengths of A027750.
A027746 lists prime factors, indices A112798, length A001222.

Programs

  • Magma
    [(&*[NthPrime(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Table[Times@@(Prime[#]&/@Divisors[n]),{n,50}] (* Harvey P. Dale, Jun 16 2017 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(i=1, #d, prime(d[i])) \\ Felix Fröhlich, Aug 05 2016
    
  • Perl
    use ntheory ":all"; sub a275700 { vecprod(map { nth_prime($) } divisors($[0])); } # Dana Jacobsen, Aug 09 2016

A061150 a(n) = Sum_{d|n} d*prime(d).

Original entry on oeis.org

2, 8, 17, 36, 57, 101, 121, 188, 224, 353, 343, 573, 535, 729, 777, 1036, 1005, 1406, 1275, 1801, 1669, 2087, 1911, 2861, 2482, 3167, 3005, 3753, 3163, 4541, 3939, 5228, 4879, 5737, 5391, 7314, 5811, 7475, 7063, 8873, 7341, 9957, 8215, 10607, 9849
Offset: 1

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Examples

			a(4)=36 because the divisors of 4 are 1,2,4 and 1*p(1) + 2*p(2) + 4*p(4) = 1*2 + 2*3 + 4*7 = 36.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(div[j]*ithprime(div[j]),j=1..tau(n)) end: seq(a(n),n=1..55); # Emeric Deutsch, Jan 20 2007
  • PARI
    a(n) = sumdiv(n, d, d*prime(d)); \\ Michel Marcus, Jun 24 2018

Formula

Equals M * V, where M = A127093 as an infinite lower triangular matrix and V = A000040, the sequence of primes as a vector. E.g., a(4) = 36 = 1*2 + 2*3 + 4*7, where (1, 2, 0, 4) = row 4 of A127093 and 2, 3 and 7 are p(1), p(2), p(4). - Gary W. Adamson, Jan 11 2007
L.g.f.: log(Product_{k>=1} 1/(1 - x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017

Extensions

Edited by N. J. A. Sloane, May 04 2007

A061151 1 + Sum_{n>=1} a_n x^n = 1/Product_{n>=1} (1+x^n)^prime(n).

Original entry on oeis.org

1, -2, 0, -3, 5, -3, 14, -4, 25, -32, 16, -88, 18, -155, 108, -153, 393, -88, 855, -160, 1255, -974, 1122, -3172, 370, -6794, 383, -10017, 5004, -9460, 19380, -2635, 45790, 5008, 76263, -7353, 87597, -77967, 48886, -244397, -45016, -500016, -115318, -734277, 56213, -710603, 810177, -161662, 2432173, 910752, 4767086
Offset: 0

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Crossrefs

Formula

a(n) = (1/n) * Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d)*d*prime(d).

A127639 A051731 * A127640, where A127640 = infinite lower triangular matrix with the sequence of primes in the main diagonal and the rest zeros.

Original entry on oeis.org

2, 2, 3, 2, 0, 5, 2, 3, 0, 7, 2, 0, 0, 0, 11, 2, 3, 5, 0, 0, 13, 2, 0, 0, 0, 0, 0, 17, 2, 3, 0, 7, 0, 0, 0, 19, 2, 0, 5, 0, 0, 0, 0, 0, 23, 2, 3, 0, 0, 11, 0, 0, 0, 0, 29, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 2, 3, 5, 7, 0, 13, 0, 0, 0, 0, 0, 37, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 2, 3, 0, 0, 0, 0, 17, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

Row sums = A007445, inverse Mobius transform of the primes: (2, 5, 7, 12, 13, 23, ...)

Examples

			First few rows of the triangle are:
2;
2, 3;
2, 0, 5;
2, 3, 0, 7;
2, 0, 0, 0, 11;
2, 3, 5, 0, 0, 13;
...
		

Crossrefs

Programs

  • Maple
    A051731 := proc(n,k) if n mod k = 0 then 1 ; else 0 ; fi ; end: A127639 := proc(n,k) A051731(n,k)*ithprime(k) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d,", A127639(n,k)) ; od ; od ; # R. J. Mathar, Mar 14 2007

Extensions

More terms from R. J. Mathar, Mar 14 2007

A062774 Inverse Moebius transform of PrimePi function.

Original entry on oeis.org

0, 1, 2, 3, 3, 6, 4, 7, 6, 8, 5, 13, 6, 11, 11, 13, 7, 17, 8, 18, 14, 14, 9, 26, 12, 16, 15, 22, 10, 29, 11, 24, 18, 19, 18, 35, 12, 21, 20, 34, 13, 37, 14, 30, 29, 24, 15, 47, 19, 32, 24, 33, 16, 42, 24, 42, 26, 27, 17, 61, 18, 30, 36, 42, 27, 48, 19, 40, 30, 48, 20, 68, 21, 34
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Examples

			n = 12: divisors = D(12) = {1,2,3,4,6,12}, pi(D(12)) = {0,1,2,2,3,5} of which the sum is 0+1+2+2+3+5 = 13 so a(12) = 13; a(p(n)) = 0+n = n, for n-th prime p(n).
		

Crossrefs

Programs

  • PARI
    { for (n=1, 1000, d=divisors(n); write("b062774.txt", n, " ", sum(k=1, length(d), primepi(d[k]))) ) } \\ Harry J. Smith, Aug 10 2009

Formula

a(n) = Sum_{d|n} pi(d).
G.f.: Sum_{k>=1} pi(k)*x^k/(1 - x^k), where pi(k) is the number of primes <= k (A000720). - Ilya Gutkovskiy, Jan 16 2017
a(n) = Sum_{d|n} omega(d!). - Wesley Ivan Hurt, May 23 2021

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Aug 10 2009

A130069 Primes by columns, interspersed with (k-1) zeros.

Original entry on oeis.org

2, 3, 2, 5, 0, 2, 7, 3, 0, 2, 11, 0, 0, 0, 2, 13, 5, 3, 0, 0, 2, 17, 0, 0, 0, 0, 0, 2, 19, 7, 0, 3, 0, 0, 0, 23, 0, 5, 0, 0, 0, 0, 0, 2, 29, 11, 0, 0, 3, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gary W. Adamson, May 05 2007

Keywords

Comments

Left column = the primes, A000040; row sums = A007445, (2, 5, 7, 12, 13, 23, ...), the inverse Moebius transform of the primes. A130070 = A130069 with nonzero terms reversed and mapped on A051731.

Examples

			First few rows of the triangle:
  2;
  3,  2;
  5,  0, 2;
  7,  3, 0, 2;
 11,  0, 0, 0, 2;
 13,  5, 3, 0, 0, 2;
 17,  0, 0, 0, 0, 0, 2;
 19,  7, 0, 3, 0, 0, 0, 2;
 23,  0, 5, 0, 0, 0, 0, 0, 2;
 29, 11, 0, 0, 3, 0, 0, 0, 0, 2;
 ...
		

Crossrefs

Formula

Primes by columns, interspersed with (k-1) zeros. Map the primes on the "1" terms of A051731, by columns; and rest zeros.

A361706 Inverse Moebius transform applied twice to primes.

Original entry on oeis.org

2, 7, 9, 19, 15, 37, 21, 50, 39, 65, 35, 116, 45, 91, 87, 134, 63, 174, 71, 200, 125, 155, 87, 322, 125, 197, 172, 282, 113, 383, 131, 349, 217, 271, 213, 555, 161, 311, 267, 546, 183, 555, 195, 482, 402, 379, 215, 857, 267, 546, 369, 602, 245, 768, 349, 774, 421, 503, 281, 1204, 287, 561, 582, 875, 425
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2023

Keywords

Comments

Dirichlet convolution of primes with the number of divisors function.

Crossrefs

Programs

  • Maple
    a:= (proc(p) proc(n) uses numtheory;
           add(p(d), d=divisors(n))
         end end@@2)(ithprime):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 23 2023
  • Mathematica
    Table[Sum[DivisorSigma[0, n/d] Prime[d], {d, Divisors[n]}], {n, 1, 65}]
  • PARI
    a(n) = sumdiv(n, d, numdiv(n/d)*prime(d)); \\ Michel Marcus, Mar 23 2023

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} prime(i) * x^(i*j) / (1 - x^(i*j)).
a(n) = Sum_{d|n} A000005(n/d) * prime(d).

A361708 Inverse Moebius transform of nonprimes.

Original entry on oeis.org

1, 5, 7, 13, 10, 21, 13, 27, 22, 30, 19, 49, 22, 39, 40, 52, 27, 63, 29, 68, 51, 56, 35, 98, 46, 64, 61, 87, 43, 114, 46, 98, 73, 80, 72, 142, 53, 87, 83, 138, 58, 145, 61, 126, 118, 103, 66, 189, 81, 135, 103, 144, 75, 177, 104, 178, 113, 127, 82, 254, 85, 135, 152, 185, 119
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2023

Keywords

Crossrefs

Programs

  • Maple
    Nonprime:= remove(isprime, [$1..1000]): N:= nops(Nonprime):
    seq(add(Nonprime[d],d=numtheory:-divisors(n)),n=1..N); # Robert Israel, Mar 23 2023
  • Mathematica
    With[{np = Select[Range[100],!PrimeQ[#] &]}, Table[DivisorSum[n, np[[#]] &], {n, Length[np]}]] (* Paolo Xausa, Aug 21 2025 *)

Formula

a(n) = Sum_{d|n} A018252(d).

A062778 Values of Moebius-transform of PrimePi function.

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 2, 2, 0, 5, 1, 6, 1, 1, 2, 7, 2, 8, 3, 2, 2, 9, 2, 6, 2, 5, 2, 10, 3, 11, 5, 4, 3, 4, 2, 12, 3, 4, 2, 13, 3, 14, 5, 6, 4, 15, 4, 11, 5, 6, 5, 16, 4, 8, 5, 6, 5, 17, 2, 18, 6, 8, 7, 9, 4, 19, 7, 8, 6, 20, 5, 21, 8, 9, 8, 12, 6, 22, 8, 13, 8, 23, 6, 13, 8, 11, 7, 24, 4, 14, 9, 11, 8
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Examples

			n=12, divisors = D(12) = {1,2,3,4,6,12}, pi(12/divisors) = {5,3,2,2,1,0}, mu(divisors) = {1,-1,-1,0,1,0}, Sum = 5*1 - 3*1 - 2*1 + 0 + 1*1 + 0 = 1, thus a(12)=1; for p=prime(n), pi(p/divisor) = {n,0}, mu({1,p})={1,-1}, Sum = 1*n + 0 = n, so a(prime(n)) = n.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu /@ (n/d)*PrimePi /@ d)]; Array[f, 94] (* Robert G. Wilson v, Dec 07 2005 *)
  • PARI
    { for (n=1, 1000, d=divisors(n); write("b062778.txt", n, " ", sum(k=1, length(d), primepi(n/d[k]) * moebius(d[k]))) ) } \\ Harry J. Smith, Aug 10 2009
    
  • PARI
    a(n) = sumdiv(n, d, primepi(d)*moebius(n/d)); \\ Michel Marcus, Nov 05 2018

Formula

a(n) = Sum_{d|n} pi(n/d)*mu(d).
Showing 1-10 of 18 results. Next