A007489 a(n) = Sum_{k=1..n} k!.
0, 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, 4037913, 43954713, 522956313, 6749977113, 93928268313, 1401602636313, 22324392524313, 378011820620313, 6780385526348313, 128425485935180313, 2561327494111820313, 53652269665821260313, 1177652997443428940313
Offset: 0
Examples
a(4) = 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. - _Michael B. Porter_, Aug 03 2016
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Section B44, Springer 2010.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Carauleanu Marc, Table of n, a(n) for n = 0..212 (first 100 terms from T. D. Noe)
- N. N. Chentzov, D. O. Shklarsky, and I. M. Yaglom, The USSR Olympiad Problem Book, Selected Problems and Theorems of Elementary Mathematics, problem 115, pp. 28 and 201-202, Dover publications, Inc., New York, 1993.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Robin Houston, Tackling the Minimal Superpermutation Problem, arXiv:1408.5108 [math.CO], 2014.
- Nathaniel Johnston, The minimal superpermutation problem (2013)
- Nathaniel Johnston, Non-uniqueness of minimal superpermutations, Discrete Math. 313 (2013), no. 14, 1553--1557. MR3047396
- S. Legendre and P. Paclet, On the Permutations Generated by Cyclic Shift , J. Int. Seq. 14 (2011) # 11.3.2.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Eric Weisstein's World of Mathematics, Factorial
- Eric Weisstein's World of Mathematics, Left Factorial
- G. Xiao, Sigma Server, Operate on "n!"
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
GAP
List([1..20],n->Sum([1..n],Factorial)); # Muniru A Asiru, Jan 31 2018
-
Haskell
a007489 n = a007489_list !! n a007489_list = scanl (+) 0 $ tail a000142_list -- Reinhard Zumkeller, Aug 29 2014
-
Magma
[0] cat [&+[Factorial(i): i in [1..n]]: n in [1..25]]; // Vincenzo Librandi, Sep 02 2016
-
Maple
A007489 := proc(n) local i; add(i!,i=1..n); end proc;
-
Mathematica
FoldList[Plus, 0, (Range@ 21)! ] (* Robert G. Wilson v, Sep 21 2007 *) Table[Sum[i!, {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 12 2009 *) Accumulate[Range[50]!] (* Harvey P. Dale, Apr 30 2011 *) Table[Plus@@(Range[n]!), {n, 20}] (* Alonso del Arte, Jul 18 2011 *)
-
PARI
a(n)=sum(k=1,n,k!) \\ Charles R Greathouse IV, Jul 25 2011
Formula
a(n) = Sum_{k=1..n} P(n, k)/C(n, k). - Ross La Haye, Sep 21 2004
a(n) = 3*A056199(n) for n>=2. - Philippe Deléham, Feb 10 2007
a(n) = !(n+1)-1=A003422(n+1)-1. - Artur Jasinski, Nov 08 2007 [corrected by Werner Schulte, Oct 20 2021]
Starting (1, 3, 9, 33, 153, ...), = row sums of triangle A137593 - Gary W. Adamson, Jan 28 2008
a(n) = a(n-1) + n! for n >= 1. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies to the differential equation A'(x)=A(x)+x/(1-x)^2+1. - Vladimir Kruchinin, Jan 22 2011
a(0)=0, a(1)=1, a(n) = (n+1)*a(n-1)-n*a(n-2). - Sergei N. Gladkovskii, Jul 05 2012
G.f.: W(0)*x/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
G.f.: x /(1-x)/Q(0),m=+2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
E.g.f.: exp(x-1)*(Ei(1) - Ei(1-x)) - exp(x) + 1/(1 - x), where Ei(x) is the exponential integral. - Ilya Gutkovskiy, Nov 27 2016
a(n) = sqrt(a(n-1)*a(n+1)-a(n-2)*n*n!), n >= 2. - Gary Detlefs, Oct 26 2020
a(n) ~ n!. - Ridouane Oudra, Jun 11 2025
Comments