A194271
Number of toothpicks or D-toothpicks added at n-th stage to the structure of A194270.
Original entry on oeis.org
0, 1, 4, 8, 16, 22, 24, 22, 40, 40, 32, 32, 56, 74, 96, 50, 88, 72, 32, 48, 72, 104, 128, 112, 144, 144, 152, 96, 152, 178, 240, 122, 184, 136, 32, 48, 72, 108, 144, 144, 184, 188, 200, 176, 272, 274, 416, 250, 288, 272, 216, 144, 208, 292, 384, 332, 376
Offset: 0
Written as a triangle:
0,
1,
4,
8,
16,22,
24,22,40,40,
32,32,56,74,96,50,88,72,
32,48,72,104,128,112,144,144,152,96,152,178,240,122,184,136,
32,48,72,108,144,144,184,188,200,176,272,274,416,250,288,...
A105397
Periodic with period 2: repeat [4,2].
Original entry on oeis.org
4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2
Offset: 0
Cf.
A010694 (period 2, repeat [2,4]).
-
A105397:=n->3 + (-1)^n; seq(A105397(n), n=0..100); # Wesley Ivan Hurt, Mar 14 2014
-
Table[3 + (-1)^n, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 14 2014 *)
LinearRecurrence[{0, 1},{4, 2},75] (* Ray Chandler, Aug 25 2015 *)
-
contfrac(2+sqrt(6)) \\ Michel Marcus, Mar 18 2014
A040003
Continued fraction for sqrt(6).
Original entry on oeis.org
2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0
2.449489742783178098197284074... = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 143.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
-
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
ContinuedFraction[Sqrt[6], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
-
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(6)); for (n=0, 20000, write("b040003.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009
A114697
Expansion of (1+x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.
Original entry on oeis.org
1, 3, 9, 22, 55, 133, 323, 780, 1885, 4551, 10989, 26530, 64051, 154633, 373319, 901272, 2175865, 5253003, 12681873, 30616750, 73915375, 178447501, 430810379, 1040068260, 2510946901, 6061962063, 14634871029, 35331704122, 85298279275, 205928262673
Offset: 0
-
Table[(3*LucasL[n, 2] +10*Fibonacci[n, 2] -3 +(-1)^n)/4, {n,0,30}] (* G. C. Greubel, May 24 2021 *)
-
Vec((1+x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 24 2015
-
[(4*lucas_number1(n+2,2,-1) -2*lucas_number1(n+1,2,-1) -3 +(-1)^n)/4 for n in (0..30)] # G. C. Greubel, May 24 2021
A274913
Square array read by antidiagonals upwards in which each new term is the least positive integer distinct from its neighbors.
Original entry on oeis.org
1, 2, 3, 1, 4, 1, 2, 3, 2, 3, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 1
The corner of the square array begins:
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, ...
1, 3, 1, 3, ...
2, 4, 2, ...
1, 3, ...
2, ...
...
The sequence written as a triangle begins:
1;
2, 3;
1, 4, 1;
2, 3, 2, 3;
1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3, 2, 3;
...
-
Table[1 + Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
A382713
Simple continued fraction expansion of sqrt(3/2).
Original entry on oeis.org
1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2
Offset: 0
-
with(numtheory); cfrac (sqrt(3/2, 70, 'quotients');
-
PadRight[{1}, 100, {2, 4}] (* Paolo Xausa, Apr 14 2025 *)
-
def A382713(n): return 1<<1+(n&1) if n else 1 # Chai Wah Wu, Apr 09 2025
A176051
Decimal expansion of (2+sqrt(6))/2.
Original entry on oeis.org
2, 2, 2, 4, 7, 4, 4, 8, 7, 1, 3, 9, 1, 5, 8, 9, 0, 4, 9, 0, 9, 8, 6, 4, 2, 0, 3, 7, 3, 5, 2, 9, 4, 5, 6, 9, 5, 9, 8, 2, 9, 7, 3, 7, 4, 0, 3, 2, 8, 3, 3, 5, 0, 6, 4, 2, 1, 6, 3, 4, 6, 2, 8, 3, 6, 2, 5, 4, 8, 0, 1, 8, 8, 7, 2, 8, 6, 5, 7, 5, 1, 3, 2, 6, 9, 9, 2, 9, 7, 1, 6, 5, 5, 2, 3, 2, 0, 1, 1, 7, 4, 0, 9, 2, 9
Offset: 1
(2+sqrt(6))/2 = 2.22474487139158904909...
Note also that (1+sqrt(6))/2 = 1.724744871391589049098642..., the mis-typed golden ratio. - _N. J. A. Sloane_, Jan 19 2025
Cf.
A010464 (decimal expansion of sqrt(6)),
A115754 (decimal expansion of sqrt(3/2)),
A010694 (repeat 2, 4).
A176213
Decimal expansion of 2+sqrt(6).
Original entry on oeis.org
4, 4, 4, 9, 4, 8, 9, 7, 4, 2, 7, 8, 3, 1, 7, 8, 0, 9, 8, 1, 9, 7, 2, 8, 4, 0, 7, 4, 7, 0, 5, 8, 9, 1, 3, 9, 1, 9, 6, 5, 9, 4, 7, 4, 8, 0, 6, 5, 6, 6, 7, 0, 1, 2, 8, 4, 3, 2, 6, 9, 2, 5, 6, 7, 2, 5, 0, 9, 6, 0, 3, 7, 7, 4, 5, 7, 3, 1, 5, 0, 2, 6, 5, 3, 9, 8, 5, 9, 4, 3, 3, 1, 0, 4, 6, 4, 0, 2, 3, 4, 8, 1, 8, 5, 9
Offset: 1
2+sqrt(6) = 4.44948974278317809819...
Cf.
A010464 (decimal expansion of sqrt(6)),
A086180 (decimal expansion of 1+sqrt(6)),
A010694 (repeat 4, 2).
A099517
A transform of (1-x)/(1-2x).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 27, 44, 71, 116, 188, 305, 493, 798, 1291, 2090, 3382, 5473, 8855, 14328, 23183, 37512, 60696, 98209, 158905, 257114, 416019, 673134, 1089154, 1762289, 2851443, 4613732, 7465175, 12078908, 19544084, 31622993, 51167077
Offset: 0
A155158
Period 4: repeat [1, 5, 7, 3].
Original entry on oeis.org
1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5, 7, 3, 1, 5
Offset: 0
-
&cat [[1, 5, 7, 3]^^30]; // Wesley Ivan Hurt, Jul 08 2016
-
seq(op([1, 5, 7, 3]), n=0..50); # Wesley Ivan Hurt, Jul 08 2016
-
PadRight[{}, 300, {1, 5, 7, 3}] (* Wesley Ivan Hurt, Jul 08 2016 *)
Showing 1-10 of 10 results.
Comments