A050535
Number of loopless multigraphs on infinite set of nodes with n edges.
Original entry on oeis.org
1, 1, 3, 8, 23, 66, 212, 686, 2389, 8682, 33160, 132277, 550835, 2384411, 10709827, 49782637, 238998910, 1182772364, 6023860266, 31525780044, 169316000494, 932078457785, 5253664040426, 30290320077851, 178480713438362, 1073918172017297
Offset: 0
From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 8 set multipartitions of {1, 1, 2, 2, 3, 3}:
(123)(123)
(1)(23)(123)
(12)(13)(23)
(1)(1)(23)(23)
(1)(2)(3)(123)
(1)(2)(13)(23)
(1)(1)(2)(3)(23)
(1)(1)(2)(2)(3)(3)
(End)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, Eq. (4.1.18).
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- George Barnes, Sanjaye Ramgoolam, and Michael Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [q-fin.ST], 2023.
- Frank Harary, The number of linear, directed, rooted, and connected graphs, Trans. Am. Math. Soc. 78 (1955) 445-463, eq. (24).
- Vladeta Jovovic, Number of m-rowed binary matrices with all row sums equal to n, up to row and column permutation
- Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph], 2017.
- Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku Nishimura, Tadashi Sakuma, and Shuhei Tsujie, Universal graph series, chromatic functions, and their index theory, arXiv:2403.09985 [math.CO], 2024. See p. 23.
A253186
Number of connected unlabeled loopless multigraphs with 3 vertices and n edges.
Original entry on oeis.org
0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330
Offset: 0
On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}.
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
- Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG], 2017; see Section 5.3.
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k = 2.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,2,2}.]
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Eq. (23).
- Gordon Royle, Small Multigraphs.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
First differences of
A034198 (excepting the first term).
-
[Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015
-
CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *)
a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *)
-
[floor(n/2) + floor((n^2 + 6)/12) for n in range(70)]
A192517
Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 3, 6, 4, 1, 0, 1, 1, 3, 7, 11, 5, 1, 0, 1, 1, 3, 8, 17, 18, 7, 1, 0, 1, 1, 3, 8, 21, 35, 32, 8, 1, 0, 1, 1, 3, 8, 22, 52, 76, 48, 10, 1, 0, 1, 1, 3, 8, 23, 60, 132, 149, 75, 12, 1, 0
Offset: 1
Table begins:
[1,0,0,0,0,0,0,0,0,...],
[1,1,1,1,1,1,1,1,1,...],
[1,1,2,3,4,5,7,8,10,...],
[1,1,3,6,11,18,32,48,75,...],
[1,1,3,7,17,35,76,149,291,...],
[1,1,3,8,21,52,132,313,741,...],
[1,1,3,8,22,60,173,471,1303,...],
[1,1,3,8,23,64,197,588,1806,...],
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.
-
\\ See A191646 for G function.
R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))}
{ my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018
A014395
Number of multigraphs with 5 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 7, 17, 35, 76, 149, 291, 539, 974, 1691, 2874, 4730, 7620, 11986, 18485, 27944, 41550, 60744, 87527, 124338, 174403, 241650, 331153, 448987, 602853, 801943, 1057615, 1383343, 1795578, 2313595, 2960656, 3763879, 4755505, 5972927, 7460196, 9267980
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
-
CoefficientList[Series[PairGroupIndex[SymmetricGroup[5],s]/.Table[s[i]->1/(1-x^i),{i,1,Binomial[5,2]}],{x,0,30}],x] (* Geoffrey Critzer, Oct 14 2012 *)
-
concat([1], G(5, 40)) \\ See A191646 for G. - Andrew Howroyd, Mar 15 2020
A003082
Number of multigraphs with 4 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313, 420, 562, 738, 956, 1221, 1550, 1936, 2405, 2958, 3609, 4368, 5260, 6279, 7462, 8814, 10356, 12104, 14093, 16320, 18834, 21645, 24783, 28272, 32158, 36442, 41187, 46410, 52151, 58443, 65345, 72864
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.19).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Axel Kleinschmidt and Valentin Verschinin, Tetrahedral modular graph functions, arXiv:1706.01889 [hep-th], 2017, p. 20.
- P. Sarnak and A. Strömbergsson, Minima of Epstein's zeta function and heights of flat tori, Inventiones mathematicae, July 2006, Volume 165, Issue 1, pp 115-151.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1).
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) )); // G. C. Greubel, Nov 04 2022
-
CoefficientList[Series[PairGroupIndex[SymmetricGroup[4], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, 4}], {x, 0, 40}], x] (* Geoffrey Critzer, Nov 10 2011 *)
LinearRecurrence[{2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1},{1,1,3,6,11,18,32,48,75,111, 160,224,313,420},50] (* Harvey P. Dale, Oct 09 2016 *)
-
Vec((x^8-x^7+x^6+x^4+x^2-x+1)/((x-1)^6*(x+1)^2*(x^2+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 02 2015
-
def A003082_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) ).list()
A003082_list(50) # G. C. Greubel, Nov 04 2022
A014397
Number of loopless multigraphs with 7 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 8, 22, 60, 173, 471, 1303, 3510, 9234, 23574, 58464, 140340, 326792, 738090, 1619321, 3455129, 7180856, 14555856, 28819926, 55808840, 105834657, 196779279, 359124362, 643976482, 1135731758, 1971734302, 3372477533
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
A014398
Number of loopless multigraphs with 8 nodes and n edges.
Original entry on oeis.org
1, 1, 3, 8, 23, 64, 197, 588, 1806, 5509, 16677, 49505, 143761, 406091, 1114890, 2970964, 7685972, 19311709, 47170674, 112123118, 259662333, 586583731, 1294143065, 2791716176, 5895027869, 12198014683, 24758285639, 49339306519
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 650.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
A050910
Number of pure 3-complexes on 8 unlabeled nodes with n multiple 3-simplexes.
Original entry on oeis.org
1, 1, 5, 21, 131, 940, 7902, 69025, 594203, 4856288, 37189863, 265916174, 1778005595, 11154474602, 65921168577, 368463685296, 1955231394323, 9884229508860, 47752849848446, 221109815065563, 983764137502726
Offset: 0
Showing 1-8 of 8 results.
Comments