A057088
Scaled Chebyshev U-polynomials evaluated at i*sqrt(5)/2. Generalized Fibonacci sequence.
Original entry on oeis.org
1, 5, 30, 175, 1025, 6000, 35125, 205625, 1203750, 7046875, 41253125, 241500000, 1413765625, 8276328125, 48450468750, 283633984375, 1660422265625, 9720281250000, 56903517578125, 333118994140625, 1950112558593750, 11416157763671875, 66831351611328125, 391237546875000000
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..1300
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=5, q=5.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=5.
- Eric Weisstein's World of Mathematics, Horadam Sequence
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (5,5)
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1) + 5*Self(n-2): n in [0..30]]; // G. C. Greubel, Jan 16 2018
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+5*a[n-2]od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
-
LinearRecurrence[{5,5}, {1,5}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
x='x+O('x^30); Vec(1/(1 - 5*x - 5*x^2)) \\ G. C. Greubel, Jan 16 2018
-
[lucas_number1(n,5,-5) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
A015523
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469, 5477472, 22964761, 96281643, 403668734, 1692414417, 7095586921, 29748832848, 124724433149, 522917463687, 2192374556806, 9191710988853, 38537005750589
Offset: 0
-
[ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
-
Join[{a = 0, b = 1}, Table[c = 3 * b + 5 * a; a = b; b = c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
a[0] := 0; a[1] := 1; a[n_] := a[n] = 3a[n - 1] + 5a[n - 2]; Table[a[n], {n, 0, 49}] (* Alonso del Arte, Jan 16 2011 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-3*x-5*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,3,-5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
A057089
Scaled Chebyshev U-polynomials evaluated at i*sqrt(6)/2. Generalized Fibonacci sequence.
Original entry on oeis.org
1, 6, 42, 288, 1980, 13608, 93528, 642816, 4418064, 30365280, 208700064, 1434392064, 9858552768, 67757668992, 465697330560, 3200729997312, 21998563967232, 151195763787264, 1039165966526976, 7142170381885440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=6, q=6.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=6.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,6).
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[1,6]; [n le 2 select I[n] else 6*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+6*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,6},{1,6},40] (* Harvey P. Dale, Nov 05 2011 *)
-
x='x+O('x^30); Vec(1/(1-6*x-6*x^2)) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,6,-6) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
A015537
Expansion of x/(1 - 5*x - 4*x^2).
Original entry on oeis.org
0, 1, 5, 29, 165, 941, 5365, 30589, 174405, 994381, 5669525, 32325149, 184303845, 1050819821, 5991314485, 34159851709, 194764516485, 1110461989261, 6331368012245, 36098688018269, 205818912140325, 1173489312774701, 6690722212434805
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015443,
A015447,
A030195,
A053404,
A057087,
A083858,
A085939,
A090017,
A091914,
A099012,
A122690,
A123270,
A180222,
A180226.
-
a:=[0,1];; for n in [3..30] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
-
[n le 2 select n-1 else 5*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
-
seq( simplify((2/I)^(n-1)*ChebyshevU(n-1, 5*I/4)), n=0..20); # G. C. Greubel, Dec 26 2019
-
LinearRecurrence[{5,4}, {0,1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
Table[2^(n-1)*Fibonacci[n, 5/2], {n, 0, 30}] (* G. C. Greubel, Dec 26 2019 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-4*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-4) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009
A180226
a(n) = 4*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 4, 26, 144, 836, 4784, 27496, 157824, 906256, 5203264, 29875616, 171535104, 984896576, 5654937344, 32468715136, 186424233984, 1070384087296, 6145778689024, 35286955629056, 202605609406464, 1163291993916416, 6679224069730304, 38349816218085376
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015443,
A015447,
A030195,
A053404,
A057087,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222.
-
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=4*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{4,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
x='x+O('x^30); concat([0], Vec(x^2/(1-4*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
A135030
Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).
Original entry on oeis.org
0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A180250.
-
[n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
-
A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
-
Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
A180250= BinaryRecurrenceSequence(5,10,0,1)
[A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015544
Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015441,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A015555 (binomial transform).
-
[n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
-
x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Showing 1-10 of 10 results.
Comments