cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A124965 Odd values of 2^n mod n corresponding to the n's given in A015911.

Original entry on oeis.org

7, 17, 43, 37, 13, 17, 57, 53, 85, 53, 63, 151, 93, 161, 107, 173, 67, 193, 251, 239, 43, 233, 107, 155, 161, 105, 81, 179, 233, 103, 239, 143, 125, 179, 349, 161, 305, 89, 257, 83, 143, 279, 197, 161, 371, 35, 15, 449, 253, 437, 403, 407, 255, 279, 353
Offset: 1

Views

Author

Zak Seidov, Nov 14 2006, corrected Nov 25 2006

Keywords

Crossrefs

Cf. A015911.

Programs

  • Mathematica
    Select[PowerMod[2,#,#]&/@Range[550],OddQ] (*Ray Chandler, Nov 20 2011*)

Formula

a(n) = A015910(A015911(n)).

Extensions

Edited by Ray Chandler at the suggestion of Jon E. Schoenfield, Nov 20 2011

A015910 a(n) = 2^n mod n.

Original entry on oeis.org

0, 0, 2, 0, 2, 4, 2, 0, 8, 4, 2, 4, 2, 4, 8, 0, 2, 10, 2, 16, 8, 4, 2, 16, 7, 4, 26, 16, 2, 4, 2, 0, 8, 4, 18, 28, 2, 4, 8, 16, 2, 22, 2, 16, 17, 4, 2, 16, 30, 24, 8, 16, 2, 28, 43, 32, 8, 4, 2, 16, 2, 4, 8, 0, 32, 64, 2, 16, 8, 44, 2, 64, 2, 4, 68, 16, 18, 64, 2, 16, 80, 4, 2, 64
Offset: 1

Views

Author

Keywords

Comments

2^n == 2 mod n if and only if n is a prime or a member of A001567 or of A006935. [Guy]. - N. J. A. Sloane, Mar 22 2012; corrected by Thomas Ordowski, Mar 26 2016
Known solutions to 2^n == 3 (mod n) are given in A050259.
This sequence is conjectured to include every integer k >= 0 except k = 1. A036236 includes a proof that k = 1 is not in this sequence, and n = A036236(k) solves a(n) = k for all other 0 <= k <= 1000. - David W. Wilson, Oct 11 2011
It could be argued that a(0) := 1 would make sense, e.g., thinking of "mod n" as "in Z/nZ", and/or because (anything)^0 = 1. See also A112987. - M. F. Hasler, Nov 09 2018

Examples

			a(7) = 2 because 2^7 = 128 = 2 mod 7.
a(8) = 0 because 2^8 = 256 = 0 mod 8.
a(9) = 8 because 2^9 = 512 = 8 mod 9.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, F10.

Crossrefs

Programs

Formula

a(2^k) = 0. - Alonso del Arte, Nov 10 2014
a(n) == 2^(n-phi(n)) mod n, where phi(n) = A000010(n). - Thomas Ordowski, Mar 26 2016

A033982 Integers n such that 2^n == 11 (mod n).

Original entry on oeis.org

1, 3, 262279, 143823239, 382114303, 1223853491, 381541784791, 556985326431, 6236258437049, 98828020264153
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

894157816841269897394424491194255510200782699 belongs to this sequence. [From Max Alekseyev]

Crossrefs

Programs

  • Mathematica
    m = 11; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 3 prepended by Max Alekseyev, May 18 2011
a(9), a(10) from Max Alekseyev, Jul 30 2011

A033983 Integers n such that 2^n == 15 (mod n).

Original entry on oeis.org

1, 13, 481, 44669, 1237231339, 1546675117, 62823773963, 284876771881, 1119485807557, 26598440989093
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^14.

Crossrefs

Programs

  • Mathematica
    m = 15; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

One more term from Joe K. Crump (joecr(AT)carolina.rr.com), Jun 20 2000
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 13 prepended by Max Alekseyev, May 18 2011
a(10) from Max Alekseyev, Dec 15 2013

A051447 Integers n such that 2^n == 9 (mod n).

Original entry on oeis.org

1, 7, 2228071, 16888457, 352978207, 1737848873, 77362855777, 567442642711
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^15. [Max Alekseyev, May 20 2012]

Crossrefs

Programs

  • Mathematica
    m = 9; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2008, at the suggestion of Don Reble
Terms 1, 7 prepended by Max Alekseyev, May 18 2011

A124974 Integers n such that 2^n == 17 (mod n).

Original entry on oeis.org

1, 3, 5, 9, 45, 99, 53559, 1143357, 2027985, 36806085, 1773607905, 3314574181, 1045463125509, 1226640523999, 3567404505159, 28726885591099, 39880799734039, 87977068273719, 106436400721299, 339966033494859, 999567363539883
Offset: 1

Views

Author

Zak Seidov, Nov 14 2006

Keywords

Comments

Some larger terms: 576541379659648320485

Examples

			2^45 = 17 + 45*781874935307,
2^99 = 17 + 99*6402275758728431320690420229.
		

Crossrefs

Programs

  • Mathematica
    m = 17; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Terms 1, 3, 5, 9 prepended by Max Alekseyev, May 20 2011
a(11)-a(21) from Max Alekseyev, May 25 2012

A125000 Integers n such that 2^n == 19 (mod n).

Original entry on oeis.org

1, 17, 2873, 10081, 3345113, 420048673, 449349533, 2961432773, 19723772249, 821451792317, 1207046362769
Offset: 1

Views

Author

Zak Seidov, Nov 15 2006

Keywords

Comments

No other terms below 10^15. Some larger terms: 500796684074966733196301. - Max Alekseyev, May 23 2012

Crossrefs

Programs

  • Mathematica
    m = 19; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Terms 1, 17 prepended by Max Alekseyev, May 20 2011
a(8)-a(11) from Max Alekseyev, May 23 2012

A124977 Least positive number k such that 2^k mod k = 2n+1, or 0 if no such k exists.

Original entry on oeis.org

0, 4700063497, 19147, 25, 2228071, 262279, 95, 481, 45, 2873, 3175999, 555, 95921, 174934013, 777, 140039, 2463240427, 477, 91, 623, 2453, 55, 345119, 1131, 943, 21967, 135, 46979, 125, 3811, 23329, 155, 1064959, 245
Offset: 0

Views

Author

Zak Seidov, Nov 14 2006

Keywords

Examples

			a(3) = 25 because 2^25 = 33554432 = 7 + 25*1342177.
		

Crossrefs

Programs

  • Mathematica
    nk[n_] := Module[ {k}, k = 1;
      While[PowerMod[2, k, k] != 2 n + 1, k++]; k]
    Join[{0}, Table[nk[i], {i, 1, 33}]]  (* Robert Price, Oct 11 2018 *)

Formula

A bisection of A036236: a(n) = A036236(2n+1).

Extensions

Edited by Max Alekseyev, May 20 2011

A226221 Numbers n such that 2^n mod n is not a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 25, 27, 32, 35, 36, 42, 45, 49, 50, 54, 55, 64, 70, 75, 77, 81, 88, 91, 95, 98, 99, 100, 104, 105, 108, 110, 115, 117, 119, 121, 125, 128, 130, 135, 136, 140, 143, 147, 150, 152, 153, 155, 156, 160, 161, 162, 169, 171, 175, 180, 184, 187, 189, 190, 198, 200
Offset: 1

Views

Author

Keywords

Comments

All terms beyond the first two are composite: this is a subsequence of A065090.

Examples

			2^18 = 262144 = 10 mod 18 and 10 is not a power of 2, so 18 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA226221 := proc(n)
        local m ;
        if n <= 2 then
            return true;
        end if;
        m := A015910(n) ;
        if type(m,'odd') or m = 0 then
            true;
        elif nops(numtheory[factorset](m))  >1 then
            true;
        else
            false;
        end if;
    end proc:
    A226221 := proc(n)
        local a;
        if n <= 2 then
            n;
        else
            for a from procname(n-1)+1 do
                if isA226221(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A226221(n),n=1..30) ; # R. J. Mathar, Jun 06 2013
  • Mathematica
    Select[Range[200],!IntegerQ[Log[2,PowerMod[2,#,#]]]&] (* Harvey P. Dale, Feb 28 2022 *)
  • PARI
    ispow2(n)=n>0 && n==1<
    				

A056740 Odd numbers k such that 2^k mod k = 2^(k+2) mod (k-2) is also an odd number.

Original entry on oeis.org

135, 1423249, 31491395, 55519333, 1065373685, 3559609381
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com), Aug 25 2000

Keywords

Examples

			135 is a term because 2^135 mod 135 = 53 and 2^137 mod 133 = 53.
		

Crossrefs

Cf. A015911.

Programs

  • PARI
    isok(n) = {va = Mod(2,n)^n; (lift(va) % 2) && (lift(va) == lift(Mod(2, n-2)^(n+2)));} \\ Michel Marcus, Sep 02 2013

Extensions

a(6) and title clarified by Sean A. Irvine, May 04 2022
Showing 1-10 of 11 results. Next