cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A119679 a(n) = least k such that the remainder when 5^k is divided by k is n.

Original entry on oeis.org

2, 3, 22, 4769, 7, 15853, 114, 9, 28, 35, 14, 1328467, 68, 111, 1555, 9569200211, 76, 2030227, 49, 21, 299, 1097122717, 51, 546707, 26, 27, 121, 529, 596, 3095, 138, 93, 136, 34723, 45, 589, 198, 87, 18142961, 595, 292, 319, 318, 117, 55, 20485243, 91
Offset: 1

Views

Author

Ryan Propper, Jun 12 2006

Keywords

Comments

From Alexander Adamchuk, Jan 31 2007: (Start)
a(n) > n.
For numbers n such that a(n-1) = n, see A015951 except first term. (End)
a(58) <= 16860204577843069 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 06 2007

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[PowerMod[5, k, k] != n, k++ ]; Print[k], {n, 30}]
    Table[0, {10000}]; k = 1; lst = {}; While[k < 5000000000, a = PowerMod[5, k, k]; If[ a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a,k}]]; k++ ]; t (* changed (to reflect the new limits) by Robert G. Wilson v, Jul 14 2009 *)

Extensions

Revised by Max Alekseyev, Sep 25 2007
a(172) = 26598818717 = 23 * 593 * 1039 * 1877, a(288) = 9158745413 = 241 * 347 * 109519, a(518) = 33288260241 = 3 * 43 * 258048529, a(558) = 7722115807 = 7 * 157 * 7026493 from Daniel Morel, May 18 2010
a(848) = 6672480963 = 3 * 241 * 9228881 from Daniel Morel, May 26 2010
a(416) = 10545901269 from Daniel Morel, Jul 05 2010
a(948) = 146246024857 from Daniel Morel, Jul 12 2010
a(822) = 466661006683 from Daniel Morel, Aug 24 2010

A015949 Numbers k such that k | 3^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 5050, 6250, 11810, 25250, 31250, 59050, 126250, 156250, 295250, 510050, 631250, 750250, 781250, 1476250, 2125250, 2550250, 3156250, 3751250, 3906250, 5964050, 7381250, 10626250, 12751250, 13947610, 15781250
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 20 = 10 for n >= 3. - G. C. Greubel, Nov 05 2018
This sequence is infinite, because for n > 1, 3^a(n) + 1 is in this sequence. - Jinyuan Wang, Nov 06 2018
For the provided data, if k is a term then p*k is a term where p is an odd divisor of k. - David A. Corneth, Nov 06 2018

Crossrefs

Cf. A034472 (3^n+1).
Cf. A006521 (k | 2^k + 1), A015950 (k | 4^k + 1), A015951 (k | 5^k + 1).
Column k=3 of A333429.

Programs

  • Magma
    [n: n in [1..2*10^7]| Modexp(3, n, n)+1 eq n]; // Vincenzo Librandi, Nov 01 2018
  • Mathematica
    Do[If[PowerMod[3, n, n] + 1 == n, Print[n]], {n, 1, 10^7}] (* Jinyuan Wang, Nov 01 2018 *)
    Select[Range[16*10^6],PowerMod[3,#,#]==#-1&] (* Harvey P. Dale, Dec 15 2024 *)
  • PARI
    for(n=1, 10^7, if(Mod(3, n)^n==-1, print1(n, ", "))) \\ Jinyuan Wang, Nov 01 2018
    

Extensions

Corrected by David W. Wilson

A015891 Numbers k such that k | 5^k + 5.

Original entry on oeis.org

1, 2, 5, 6, 10, 30, 70, 1565, 2806, 3126, 51670, 58290, 214405, 285286, 378258, 1854766, 2170486, 2222122, 2247610, 3463230, 4147522, 5942526, 9381126, 14818486, 15743890, 20162858, 34087054, 34838686, 38742166, 71067430
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A067946 = numbers n such that n divides 5^n-1. Cf. A015951 = numbers n such that n | 5^n + 1.

Programs

  • Mathematica
    Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+5)/# ]&] (* Alexander Adamchuk *)

Extensions

Corrected by Alexander Adamchuk, Nov 04 2006

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 1, 2, 9, 0, 1, 5, 10, 27, 0, 1, 2, 25, 50, 81, 0, 1, 7, 3, 125, 250, 171, 0, 1, 2, 49, 9, 205, 1250, 243, 0, 1, 3, 10, 203, 21, 625, 5050, 513, 0, 1, 2, 9, 50, 343, 26, 1025, 6250, 729, 0, 1, 11, 5, 27, 250, 1379, 27, 2525, 11810, 1539, 0
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
  2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
  0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
  0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
  0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
  0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
  0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
  0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
  0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
  0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
		

Crossrefs

Rows n=1-2 give: A000012, A092067.
Main diagonal gives A333430.
Cf. A333432.

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=1 then `if`(n<3, n, 0) else
            while nops(p(k)) 0 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    dmax = 12;
    mmax = 2^(dmax+3);
    col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
    A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
    Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* Jean-François Alcover, Jan 05 2021 *)

A123047 Numbers k that divide 5^k + 4.

Original entry on oeis.org

1, 3, 129, 60767, 76433163, 454034821, 26675718567, 164304369911289
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

k must be odd since any power of 5 plus 4 is odd. - Robert G. Wilson v, Nov 14 2006
a(9) > 10^15. - Max Alekseyev, Oct 17 2016
Large term (may not be the next one): 3014733401203184049549. - Max Alekseyev, Oct 18 2013

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), A124246 (k=2), A123062 (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), this sequence (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

Extensions

a(4) and a(5) from Robert G. Wilson v, Nov 14 2006
a(7) from Ryan Propper, Mar 23 2007
a(8) from Max Alekseyev, Oct 17 2016

A015954 Numbers k such that k | 7^k + 1.

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 2810, 5050, 6250, 14050, 25250, 31250, 40210, 70250, 126250, 156250, 201050, 351250, 510050, 631250, 650050, 781250, 789610, 1005250, 1265050, 1419050, 1756250, 2550250, 3156250, 3250250, 3906250, 3948050, 5026250, 6325250, 7095250, 8781250, 9478130
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), this sequence (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=7 of A333429.

A015960 Numbers k such that k | 11^k + 1.

Original entry on oeis.org

1, 2, 3, 9, 27, 81, 111, 122, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 7442, 8991, 10233, 12321, 13203, 19683, 24753, 26973, 30699, 36963, 39609, 59049, 74259, 80919, 89426, 92097, 110889, 118341, 118827, 151959, 177147, 222777
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), this sequence (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Cf. A333134.
Column k=11 of A333429.

Programs

  • Mathematica
    Select[Range[250000],PowerMod[11,#,#]==#-1&] (* Harvey P. Dale, Nov 09 2022 *)

A123062 Numbers k that divide 5^k + 2.

Original entry on oeis.org

1, 7, 51373, 78127, 138943, 620299, 2842933, 137422693, 2259290321, 413879131637, 434757575329, 915535274009, 14864856896743
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

No further terms up to 10^15. Larger term: 64629734103979763971. - Max Alekseyev, Oct 15 2016

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), A124246 (k=2), this sequence (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), A123047 (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

  • Mathematica
    Select[Range[1000000], IntegerQ[(PowerMod[5,#,# ]+2)/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==-2 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

More terms from Farideh Firoozbakht, Nov 18 2006
a(9) from Ryan Propper, Jan 29 2007
a(10)-a(13) from Max Alekseyev, Jul 28 2009, Oct 15 2016

A123091 Numbers k such that k divides 5^k - 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 124, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 190, 191, 193, 197, 199, 211, 217, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

All primes are the terms of a(n). Nonprimes in a(n) are listed in A122782(n) = {1,4,10,15,20,65,124,190,217,310,435,561,781,...}. All pseudoprimes to base 5 are the terms of a(n). They are listed in A005936(n) = {4,124,217,561,781,...}. Numbers n up to 10^6 such that n divides 5^n + 5 are {1,2,5,6,10,30,70,1565,2806,3126,51670,58290,214405,285286,378258}.

Crossrefs

Cf. A122782 (nonprimes n such that 5^n==5 (mod n)).
Cf. A005936 (pseudoprimes to base 5).
Cf. A067946 (numbers n such that n divides 5^n-1).
Cf. A015951 (numbers n such that n | 5^n + 1).

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[(PowerMod[5,#,# ]-5)/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==5 \\ Charles R Greathouse IV, Nov 04 2016

A124246 Numbers k that divide 5^k - 2.

Original entry on oeis.org

1, 3, 123, 202884639, 242405133, 92273577267, 2670733723929, 81035221987959
Offset: 1

Views

Author

Farideh Firoozbakht, Nov 19 2006

Keywords

Comments

No other terms below 10^15. Some larger terms: 60092749466423900486673922957841, 401021769827858799355246286337987697472836927856337282726789534497163. - Max Alekseyev, Oct 15 2016

Crossrefs

Solutions to 5^n == k (mod n): A067946 (k=1), A015951 (k=-1), this sequence (k=2), A123062 (k=-2), A123061 (k=3), A123052 (k=-3), A125949 (k=4), A123047 (k=-4), A123091 (k=5), A015891 (k=-5), A277350 (k=6), A277348 (k=-6).

Programs

  • Mathematica
    Do[If[Mod[(PowerMod[5,n,n]-2),n]==0,Print[n]],{n,1000000000}]
  • PARI
    is(n)=Mod(5,n)^n==2 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

a(6)-a(8) from Max Alekseyev, Jul 28 2009, Jun 02 2010, Oct 15 2016
Showing 1-10 of 23 results. Next