cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010693 Periodic sequence: Repeat 2,3.

Original entry on oeis.org

2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 0

Views

Author

Keywords

Comments

a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010
Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012
p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013

Crossrefs

Cf. A139421.
Cf. A026549 (partial products).

Programs

Formula

a(n) = 5/2 - ((-1)^n)/2.
a(n) = 2 + (n mod 2) = A007395(n) + A000035(n). - Reinhard Zumkeller, Mar 23 2005
a(n) = A020639(A016767(n)) for n>0. - Reinhard Zumkeller, Jan 29 2009
From Jaume Oliver Lafont, Mar 20 2009: (Start)
G.f.: (2+3*x)/(1-x^2).
Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)
a(n) = A001615(2n)/A001615(n) for n > 0. - Enrique Pérez Herrero, Jun 06 2012
a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
E.g.f.: 2*cosh(x) + 3*sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Definition rewritten by Bruno Berselli, Sep 30 2011

A155955 Triangle read by rows: T(n,k) = (k*n)^k, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 16, 1, 3, 36, 729, 1, 4, 64, 1728, 65536, 1, 5, 100, 3375, 160000, 9765625, 1, 6, 144, 5832, 331776, 24300000, 2176782336, 1, 7, 196, 9261, 614656, 52521875, 5489031744, 678223072849, 1, 8, 256, 13824, 1048576, 102400000, 12230590464
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 31 2009

Keywords

Comments

T(n,0) = 1;
T(n,1) = n for n > 0;
T(n,2) = A016742(n) for n > 1;
T(n,3) = A016767(n) for n > 2;
T(n,4) = A016804(n) for n > 3;
T(n,5) = A016853(n) for n > 4;
T(n,6) = A016914(n) for n > 5;
T(n,7) = A016987(n) for n > 6;
T(n,8) = A017072(n) for n > 7;
T(n,9) = A017169(n) for n > 8;
T(n,10) = A017278(n) for n > 9;
T(n,11) = A017399(n) for n > 10;
T(n,12) = A017532(n) for n > 11;
T(n,n) = A062206(n).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  16;
  1, 3,  36,  729;
  1, 4,  64, 1728,  65536;
  1, 5, 100, 3375, 160000,  9765625;
  1, 6, 144, 5832, 331776, 24300000, 2176782336;
  ...
		

Crossrefs

Cf. A000312.

Programs

  • Magma
    [[(n*k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Sep 15 2018
  • Mathematica
    Table[If[n == 0, 1, If[ k == 0, 1, (k*n)^k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((k*n)^k, ", "))) \\ G. C. Greubel, Sep 15 2018
    

A244725 a(n) = 5*n^3.

Original entry on oeis.org

0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Programs

  • Magma
    [5*n^3: n in [0..40]];
    
  • Magma
    I:=[0,5,40,135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
  • PARI
    a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A097321 a(n) = (3*n-1) * 3*n * (3*n+1).

Original entry on oeis.org

24, 210, 720, 1716, 3360, 5814, 9240, 13800, 19656, 26970, 35904, 46620, 59280, 74046, 91080, 110544, 132600, 157410, 185136, 215940, 249984, 287430, 328440, 373176, 421800, 474474, 531360, 592620, 658416, 728910, 804264, 884640, 970200, 1061106, 1157520
Offset: 1

Views

Author

Ralf Stephan, Aug 07 2004

Keywords

Crossrefs

Programs

Formula

G.f.: 6x * (4x^2 + 19x + 4) / (1-x)^4.
Sum_{n>=1} 1/a(n) = (log(3) - 1)/2. - Amiram Eldar, Jul 04 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - 2*log(2)/3. - Amiram Eldar, May 15 2022
E.g.f.: 3*exp(x)*x*(8 + 27*x + 9*x^2). - Stefano Spezia, Feb 20 2025

A243147 Least number k such that n^k + k^n is prime or 0 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 24, 1, 54, 69, 2, 1, 3100, 1
Offset: 1

Views

Author

Derek Orr, May 30 2014

Keywords

Comments

More terms given in links.
a(n) = 1 if and only if n + 1 is prime. Thus there are infinitely many nonzero entries.
For n in A016767, a(n) = 0 since n^k + k^n is factorable and will never be prime. Thus there are infinitely many zero entries.
If a(i) = j then a(j) <= i for all i and j not equal to 0.
a(n) and n must have opposite parity. If n is odd/even, a(n) must be even/odd, respectively.
Further, gcd(n, a(n)) = 1 for all n.

Examples

			3^1 + 1^3 = 4 is not prime. 3^2 + 2^3 = 17 is prime. So a(3) = 2.
		

Crossrefs

Cf. A016767.

Programs

  • PARI
    a(n)=if(ispower(n)&&ispower(n)%3==0&&n%3==0,return(0));k=1;while(!ispseudoprime(n^k+k^n),k++);return(k)
    vector(12, n, a(n))

A181968 a(n) = 54n^3 - 1.

Original entry on oeis.org

53, 431, 1457, 3455, 6749, 11663, 18521, 27647, 39365, 53999, 71873, 93311, 118637, 148175, 182249, 221183, 265301, 314927, 370385, 431999, 500093, 574991, 657017, 746495, 843749, 949103, 1062881, 1185407, 1317005, 1457999, 1608713, 1769471, 1940597, 2122415
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2012

Keywords

Comments

a(n) is coprime to 27*n^3*(27*n^3 - 1) - 2 = A016767(n)*(A016767(n)-1) - 2.
x^3 + y^3 + z^3 = w^3 has infinitely many solutions, where every pair of elements x, y and z are coprime.
This follows from the identity a(n)^3 + (A016767(n)+1)^3 + (A016768(n)-A008588(n))^3 = (A016768(n)+A008585(n))^3 for n >= 1.

References

  • Wacław Sierpiński, Czym sie zajmuje teoria liczb. Warsaw: PW "Wiedza Powszechna", 1957, pp. 59-60.

Crossrefs

Programs

  • Magma
    [ 54*n^3-1 : n in [1..34]];
    
  • Maple
    seq(54*n^3-1, n=1..34);
  • Mathematica
    Table[54*n^3 - 1, {n, 34}]
  • PARI
    vector(34, n, 54*n^3-1)

Formula

For n >= 1, a(n) = 54*A000578(n) - 1 = 2*A016767(n) - 1.
G.f.: (-1 + 57*x + 213*x^2 + 55*x^3)/(1 - x)^4.

A229213 Square array of denominators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 16, 27, 4, 36, 216, 256, 5, 64, 729, 4096, 3125, 6, 100, 1728, 20736, 100000, 46656, 7, 144, 3375, 65536, 759375, 2985984, 823543, 8, 196, 5832, 160000, 3200000, 34012224, 105413504, 16777216, 9, 256
Offset: 1

Views

Author

Jean-François Alcover, Sep 16 2013

Keywords

Comments

Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A000027
2nd row = A016742
3rd row = A016767
4th row = A016804
5th row = A016853
1st column = A000312
2nd column = A062971
3rd column = A091482
4th column = A091483

Examples

			Table of fractions begins:
   2,       3/2,        4/3,         5/4, ...
  9/4,     25/16,      49/36,       81/64, ...
64/27,   343/216,   1000/729,    2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of denominators begins:
1,      2,     3,     4, ...
4,     16,    36,    64, ...
27,   216,   729,  1728, ...
256, 4096, 20736, 65536, ...
...
Triangle of antidiagonals begins:
1;
2, 4;
3, 16, 27;
4, 36, 216, 256;
...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Denominator
Showing 1-7 of 7 results.