cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A181565 a(n) = 3*2^n + 1.

Original entry on oeis.org

4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473
Offset: 0

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

From Peter Bala, Oct 28 2013: (Start)
Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
This sequence gives an Engel expansion of 2/3 to the base 2, with the associated series expansion 2/3 = 2/4 + 2^2/(4*7) + 2^3/(4*7*13) + 2^4/(4*7*13*25) + ....
More generally, for n and m positive integers, the sequence [m + 1, n*m + 1, n^2*m + 1, ...] gives an Engel expansion of the rational number n/m to the base n. See the cross references for several examples. (End)
The only squares in this sequence are 4, 25, 49. - Antti Karttunen, Sep 24 2023

Crossrefs

Essentially a duplicate of A004119.
A002253 and A039687 give the primes in this sequence, and A181492 is the subsequence of twin primes.

Programs

Formula

a(n) = A004119(n+1) = A103204(n+1) for all n >= 0.
From Ilya Gutkovskiy, Jun 01 2016: (Start)
O.g.f.: (4 - 5*x)/((1 - x)*(1 - 2*x)).
E.g.f.: (1 + 3*exp(x))*exp(x).
a(n) = 3*a(n-1) - 2*a(n-2). (End)
a(n) = 2*a(n-1) - 1. - Miquel Cerda, Aug 16 2016
For n >= 0, A005940(a(n)) = A001248(1+n). - Antti Karttunen, Sep 24 2023

A083575 a(0) = 6; for n>0, a(n) = 2*a(n-1) - 1.

Original entry on oeis.org

6, 11, 21, 41, 81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921, 163841, 327681, 655361, 1310721, 2621441, 5242881, 10485761, 20971521, 41943041, 83886081, 167772161, 335544321, 671088641, 1342177281, 2684354561, 5368709121, 10737418241
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

The primes in this sequence are listed in A050526. - M. F. Hasler, Oct 30 2010
An Engel expansion of 2/5 to the base 2 as defined in A181565, with the associated series expansion 2/5 = 2/6 + 2^2/(6*11) + 2^3/(6*11*21) + 2^4/(6*11*21*41) + ... . - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [5*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
    
  • Mathematica
    NestList[2#-1&,6,40] (* Harvey P. Dale, Jun 23 2017 *)
  • PARI
    a(n)=5<M. F. Hasler, Oct 30 2010
    
  • PARI
    Vec((6-7*x)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Sep 20 2016

Formula

a(n) = 5*2^n + 1. - M. F. Hasler, Oct 30 2010
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f.: (6-7*x) / ((1-x)*(1-2*x)). - Colin Barker, Sep 20 2016
E.g.f.: exp(x)*(1 + 5*exp(x)). - Stefano Spezia, Oct 08 2022
Product_{n>=0} (1 + 1/a(n)) = 7/5. - Amiram Eldar, Aug 04 2024

A083686 a(0) = 8; for n>0, a(n) = 2*a(n-1) - 1.

Original entry on oeis.org

8, 15, 29, 57, 113, 225, 449, 897, 1793, 3585, 7169, 14337, 28673, 57345, 114689, 229377, 458753, 917505, 1835009, 3670017, 7340033, 14680065, 29360129, 58720257, 117440513, 234881025, 469762049, 939524097, 1879048193, 3758096385, 7516192769, 15032385537
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

An Engel expansion of 2/7 to the base 2 as defined in A181565, with the associated series expansion 2/7 = 2/8 + 2^2/(8*15) + 2^3/(8*15*29) + 2^4/(8*15*29*57) + ... . - Peter Bala, Oct 29 2013
The initial 8 is the only cube in this sequence. - Antti Karttunen, Sep 24 2023

Crossrefs

Programs

  • Magma
    [7*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
    
  • Mathematica
    7*2^Range[0, 50] + 1 (* Paolo Xausa, Apr 02 2024 *)
  • PARI
    Vec((8-9*x)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Sep 20 2016
    
  • PARI
    a(n)=7<Charles R Greathouse IV, Sep 20 2016

Formula

a(n) = 7*2^n + 1. - David Brotherton (dbroth01(AT)aol.com), Jul 29 2003
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f.: (8-9*x) / ((1-x)*(1-2*x)). - Colin Barker, Sep 20 2016
E.g.f.: exp(x)*(1 + 7*exp(x)). - Stefano Spezia, Oct 08 2022
For n >= 0, A005940(a(n)) = A030078(1+n). - Antti Karttunen, Sep 24 2023

A195744 a(n) = 15*2^(n+1) + 1.

Original entry on oeis.org

31, 61, 121, 241, 481, 961, 1921, 3841, 7681, 15361, 30721, 61441, 122881, 245761, 491521, 983041, 1966081, 3932161, 7864321, 15728641, 31457281, 62914561, 125829121, 251658241, 503316481, 1006632961, 2013265921, 4026531841, 8053063681, 16106127361
Offset: 0

Views

Author

Brad Clardy, Sep 23 2011

Keywords

Comments

Binary numbers of form 1111(0^n)1 where n is the index and number of 0's.
Base 10 numbers of this sequence always end in 1.
An Engel expansion of 1/15 to the base 2 as defined in A181565, with the associated series expansion 1/15 = 2/31 + 2^2/(31*61) + 2^3/(31*61*121) + 2^4/(31*61*121*241) + ... . - Peter Bala, Oct 29 2013
The only squares in this sequence are 121 = 11^2 and 961 = 31^2. - Antti Karttunen, Sep 24 2023

Examples

			First few terms in binary are 11111, 111101, 1111001, 11110001, 111100001.
		

Crossrefs

Programs

Formula

a(n) = A052996(n+3) + A164094(n+2).
From Bruno Berselli, Sep 23 2011: (Start)
G.f.: (31-32*x)/(1-3*x+2*x^2).
a(n) = 2*a(n-1)-1.
a(n) = A110286(n+1)+1 = A128470(2^n). (End)
E.g.f.: exp(x)*(1 + 30*exp(x)). - Stefano Spezia, Oct 08 2022
For n >= 0, A005940(a(n)) = A030514(2+n). - Antti Karttunen, Sep 24 2023

Extensions

Corrected by Arkadiusz Wesolowski, Sep 23 2011

A083683 a(n) = 11*2^n + 1.

Original entry on oeis.org

12, 23, 45, 89, 177, 353, 705, 1409, 2817, 5633, 11265, 22529, 45057, 90113, 180225, 360449, 720897, 1441793, 2883585, 5767169, 11534337, 23068673, 46137345, 92274689, 184549377, 369098753, 738197505, 1476395009, 2952790017, 5905580033, 11811160065
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

An Engel expansion of 2/11 to the base 2 as defined in A181565, with the associated series expansion 2/11 = 2/12 + 2^2/(12*23) + 2^3/(12*23*45) + 2^4/(12*23*45*89) + ... . - Peter Bala, Oct 29 2013

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - 1.
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f. (12-13*x)/((2*x-1)*(x-1)). - R. J. Mathar, Nov 03 2011
E.g.f.: exp(x)*(1 + 11*exp(x)). - Stefano Spezia, Oct 08 2022

A083705 a(n) = 2*a(n-1) - 1 with a(0) = 10.

Original entry on oeis.org

10, 19, 37, 73, 145, 289, 577, 1153, 2305, 4609, 9217, 18433, 36865, 73729, 147457, 294913, 589825, 1179649, 2359297, 4718593, 9437185, 18874369, 37748737, 75497473, 150994945, 301989889, 603979777, 1207959553, 2415919105, 4831838209, 9663676417, 19327352833
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

An Engel expansion of 2/9 to the base 2 as defined in A181565, with the associated series expansion 2/9 = 2/10 + 2^2/(10*19) + 2^3/(10*19*37) + 2^4/(10*19*37*73) + ... . - Peter Bala, Oct 29 2013

Crossrefs

Programs

Formula

From R. J. Mathar, Aug 01 2009: (Start)
a(n) = 1 + 9*2^n = 3*a(n-1) - 2*a(n-2).
G.f.: -(-10+11*x)/((2*x-1)*(x-1)). (End)
E.g.f.: exp(x)*(1 + 9*exp(x)). - Stefano Spezia, Oct 08 2022

A168596 a(n) = 2*a(n-1) - 1 with a(0)=14.

Original entry on oeis.org

14, 27, 53, 105, 209, 417, 833, 1665, 3329, 6657, 13313, 26625, 53249, 106497, 212993, 425985, 851969, 1703937, 3407873, 6815745, 13631489, 27262977, 54525953, 109051905, 218103809, 436207617, 872415233, 1744830465, 3489660929
Offset: 0

Views

Author

Keywords

Comments

An Engel expansion of 2/13 to the base 2 as defined in A181565, with the associated series expansion 2/13 = 2/14 + 2^2/(14*27) + 2^3/(14*27*53) + 2^4/(14*27*53*105) + .... - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [13*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
  • Mathematica
    s=14;lst={s};Do[s=s+(s-1);AppendTo[lst,s],{n,5!}];lst
    NestList[2#-1&,14,30] (* Harvey P. Dale, Jul 22 2014 *)

Formula

From Vincenzo Librandi, Nov 03 2011: (Start)
a(n) = 13*2^n + 1.
a(n) = 3*a(n-1) - 2*a(n-2). (End)
From G. C. Greubel, Jul 27 2016: (Start)
G.f.: (14 - 15*x)/((1-x)*(1-2*x)).
E.g.f.: exp(x) + 13*exp(2*x). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Nov 03 2011

A048578 Pisot sequence L(3,5).

Original entry on oeis.org

3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593, 17179869185
Offset: 0

Views

Author

Keywords

Comments

Lexicographically earliest (when ordered) minimal set of generators for A001969 (numbers with an even number of binary 1's) as a group under A003987(.,.) the XOR operation. - Peter Munn, Aug 21 2019
Odd numbers with binary weight = 2. - David James Sycamore, Feb 02 2025

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.

Crossrefs

Subsequence of A000051.
See A008776 for definitions of Pisot sequences.
Essentially the same as A020737 and A000051.

Programs

  • Magma
    [2^(n+1)+1 : n in [0..40]]; // Vincenzo Librandi, Sep 01 2011
    
  • Mathematica
    LinearRecurrence[{3,-2},{3,5},40] (* Harvey P. Dale, Sep 10 2017 *)
  • PARI
    my(x='x+O('x^99)); Vec(1/(1-x)+2/(1-2*x)) \\ Altug Alkan, Mar 29 2016

Formula

a(n) = 2^(n+1)+1.
a(n) = 3*a(n-1) - 2*a(n-2).
O.g.f.: (3-4*x)/(1-3*x+2*x^2). - R. J. Mathar, Nov 23 2007
E.g.f.: exp(x)*(1 + 2*exp(x)). - Elmo R. Oliveira, Dec 06 2024

A088039 Smallest k such that k^3 == 1 (mod some n-th power), k > 1.

Original entry on oeis.org

2, 4, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649
Offset: 1

Views

Author

Amarnath Murthy, Sep 19 2003

Keywords

Comments

In most of the cases the n-th power that divides a(n)^3-1 is 2^n.

Crossrefs

Cf. A088038.
Cf. A020737. [From R. J. Mathar, Sep 11 2008]

Formula

a(n) = A088038(n)^(1/3).
Conjecture: a(n) = 2^n+1 for n>2. a(n) = 3*a(n-1)-2*a(n-2) for n>4. G.f.: -x*(2*x^3-x^2+2*x-2) / ((x-1)*(2*x-1)). [Colin Barker, Feb 05 2013]

Extensions

Corrected and extended by Ray Chandler, Oct 04 2003

A277088 Pisot sequences L(5,12), S(5,12).

Original entry on oeis.org

5, 12, 29, 71, 174, 427, 1048, 2573, 6318, 15514, 38095, 93544, 229702, 564045, 1385042, 3401044, 8351444, 20507414, 50357044, 123654396, 303639937, 745603993, 1830870208, 4495799044, 11039673351, 27108504296, 66566372193, 163457262657, 401377990645
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A000129 (with offset 3 appears to be Pisot sequences E(5,12), P(5,12)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 12, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 28}]
    RecurrenceTable[{a[0] == 5, a[1] == 12, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1]}, a, {n, 28}]

Formula

a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 5, a(1) = 12.
a(n) = floor(a(n-1)^2/a(n-2)+1), a(0) = 5, a(1) = 12.
Conjectures: (Start)
G.f.: (5 - 3*x + 3*x^2 - 2*x^3 + x^5 - 3*x^6 - x^7 - 2*x^8)/((1 - x)*(1 - 2*x - 2*x^3 - x^4 - x^5 - 2*x^6 - x^7 - x^8)).
a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - a(n-7) - a(n-9). (End)
Showing 1-10 of 10 results.