cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 80 results. Next

A372319 Products of prime triples (p, p+2, p+6) where p = A022004(n).

Original entry on oeis.org

385, 2431, 7429, 82861, 1113121, 1317919, 7262011, 12112039, 30857731, 42749359, 99677881, 266669461, 558789841, 635308669, 690017701, 1308131911, 2095502089, 2215630321, 2922149239, 3265932301, 3305715499, 4170674419, 6577726891, 7995982009, 9046566901, 11234386249
Offset: 1

Views

Author

Michael De Vlieger, Jun 29 2024

Keywords

Comments

Subsequence of A120944, subsequence of A007304.
Terms are congruent to 1 (mod 6), since A022004(n) is congruent to 5 mod 6, and 5+2 and 5+6 are congruent to 1 and 5 (mod 6), respectively. The product 5*1*5 is congruent to 1 (mod 6).

Examples

			a(1) = 385 = 5 * 7 * 11.
a(2) = 2431 = 11 * 13 * 17.
a(3) = 7429 = 17 * 19 * 23, etc.
		

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, {0, 1, 2}] &, Select[Prime@ Range[360], AllTrue[{# + 2, # + 6}, PrimeQ] &]]

A163635 a(n) = 3*A022004(n) + 8.

Original entry on oeis.org

23, 41, 59, 131, 311, 329, 581, 689, 941, 1049, 1391, 1931, 2471, 2579, 2651, 3281, 3839, 3911, 4289, 4451, 4469, 4829, 5621, 5999, 6251, 6719, 6809, 7979, 8069, 9761, 10391, 10589, 11021, 11759, 12011, 12389, 13559, 13919, 14369, 14801
Offset: 1

Views

Author

Vincenzo Librandi, Aug 02 2009

Keywords

Comments

Sum of the members of the n-th prime triple (p, p+2, p+6).
All terms are congruent to 5 (mod 18). See A242215. - Robert Bilinski, Sep 24 2019

Examples

			23 is in the sequence because 23 = 5+7+11 = 3*5+8.
41 is in the sequence because 41 = 11+13+17 = 3*11+8.
		

Crossrefs

Programs

  • Magma
    [(3*p+8): p in PrimesUpTo(1000)| IsPrime(p+6) and IsPrime(p+2)]; // Vincenzo Librandi, Jan 06 2018
    
  • Mathematica
    8 + 3*Select[Prime[Range[1000]], PrimeQ[# + 2] && PrimeQ[# + 6] &] (* Vincenzo Librandi, Jan 04 2014 *)
  • PARI
    is(n)=n%18==5 && isprime(n\3-2) && isprime(n\3) && isprime(n\3+4) \\ Charles R Greathouse IV, Jan 06 2018

Formula

a(n) = A022004(n) + (A022004(n)+2) + (A022004(n)+6);
a(n) = A022004(n) + A073648(n) + A098412(n).

Extensions

Notation normalized by R. J. Mathar, Aug 07 2009

A277774 Decimal expansion of the prime triples constant, also known as Brun's constant B_{3a} = Sum (1/p + 1/(p+2) + 1/(p+6)) as p runs through the initial members of prime triples A022004.

Original entry on oeis.org

1, 0, 9, 7, 8, 5, 1, 0, 3, 9, 6, 7, 9
Offset: 1

Views

Author

Martin Renner, Oct 29 2016

Keywords

Examples

			1.097851039679...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.14, p. 133.

Crossrefs

Extensions

Offset corrected by Rick L. Shepherd, Nov 03 2016

A007530 Prime quadruples: numbers k such that k, k+2, k+6, k+8 are all prime.

Original entry on oeis.org

5, 11, 101, 191, 821, 1481, 1871, 2081, 3251, 3461, 5651, 9431, 13001, 15641, 15731, 16061, 18041, 18911, 19421, 21011, 22271, 25301, 31721, 34841, 43781, 51341, 55331, 62981, 67211, 69491, 72221, 77261, 79691, 81041, 82721, 88811, 97841, 99131
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, 5, all terms == 11 (mod 30). - Zak Seidov, Dec 04 2008
Some further values: For k = 1, ..., 10, a(k*10^3) = 11721791, 31210841, 54112601, 78984791, 106583831, 136466501, 165939791, 196512551, 230794301, 265201421. - M. F. Hasler, May 04 2009
k is the first prime of 2 consecutive twin prime pairs. - Daniel Forgues, Aug 01 2009
The prime quadruples of form p + (0, 2, 6, 8) have the quadruple congruence class (-1, +1, -1, +1) (mod 6). - Daniel Forgues, Aug 12 2009
s = (p+8)-(p) = 8 is the smallest s giving an admissible prime quadruple form, for which the only admissible form is p + (0, 2, 6, 8), since (0, 2, 6, 8) is the only form not covering all the congruence classes for any prime <= 4. Since s is smallest, these prime quadruples are prime constellations (or prime quadruplets), i.e., they contain consecutive primes. - Daniel Forgues, Aug 12 2009
Except for the first term, 5, all prime quadruples are of the form (15k-4, 15k-2, 15k+2, 15k+4), with k >= 1, and so are centered on 15k. - Daniel Forgues, Aug 12 2009
Subsequence of A022004. - R. J. Mathar, Feb 10 2013
The quadruplets are listed in A136162. - M. F. Hasler, Apr 20 2013
Starting at a(2) and examining the first 50 terms, (a(n)+4)/15 is a prime in 8 cases and a semiprime in 21; the last 18 terms have 2 primes and 11 semiprimes. Do the number of semiprimes continue to occur greater than mere chance? - J. M. Bergot, Apr 27 2015

Examples

			From _M. F. Hasler_, May 04 2009: (Start)
a(1)=5 is the start of the first prime quadruplet, {5,7,11,13}.
a(2)=11 is the start of the second prime quadruplet, {11,13,17,19}, and all other prime quadruplets differ from this one by a multiple of 30.
a(100)=470081 is the start of the 100th prime quadruplet;
a(500)=4370081 is the start of the 500th prime quadruplet.
a(167)=1002341 is the least quadruplet prime beyond 10^6. (End)
		

References

  • H. Rademacher, Lectures on Elementary Number Theory. Blaisdell, NY, 1964, p. 4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A159910 (first differences divided by 30), A120120, A007811, A014561.

Programs

  • Magma
    [ p: p in PrimesUpTo(11000)| IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8)] // Vincenzo Librandi, Nov 18 2010
    
  • Mathematica
    A007530 = Select[Range[1, 10^5 - 1, 2], Union[PrimeQ[# + {0, 2, 6, 8}]] == {True} &] (* Alonso del Arte, Sep 24 2011 *)
    Select[Prime[Range[10000]],AllTrue[#+{2,6,8},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    A007530( n, print_all=0, s=2 )={ my(p,q,r); until(!n--, until( p+8==s=nextprime(s+2), p=q; q=r; r=s); print_all && print1(p","));p} \\ The optional 3rd argument can be used to obtain large values by starting from some precomputed point instead of zero, using a(n+k) = A007530(k+1,,a(n)) (or A007530(k,,a(n)-1) for k>0); e.g., you get a(10^4+k) using A007530(k+1,,265201421) (value of a(10^4) from the comments section). - M. F. Hasler, May 04 2009
    
  • PARI
    forprime(p=2, 10^5, if(isprime(p+2) && isprime(p+6) && isprime(p+8), print1(p, ", "))) \\ Felix Fröhlich, Jun 22 2014
    
  • Python
    from sympy import primerange
    def aupto(limit):
      p, q, r, alst = 2, 3, 5, []
      for s in primerange(7, limit+9):
        if p+2 == q and p+6 == r and p+8 == s: alst.append(p)
        p, q, r = q, r, s
      return alst
    print(aupto(10**5)) # Michael S. Branicky, May 11 2021

Formula

a(n) = 11 + 30*A014561(n-1) for n > 1. - M. F. Hasler, May 04 2009

Extensions

More terms from Warut Roonguthai
Incorrect formula and Mathematica program removed by N. J. A. Sloane, Dec 04 2008, at the suggestion of Zak Seidov
Values up to a(1000) checked with the given PARI code by M. F. Hasler, May 04 2009

A022008 Initial member of prime sextuples (p, p+4, p+6, p+10, p+12, p+16).

Original entry on oeis.org

7, 97, 16057, 19417, 43777, 1091257, 1615837, 1954357, 2822707, 2839927, 3243337, 3400207, 6005887, 6503587, 7187767, 7641367, 8061997, 8741137, 10526557, 11086837, 11664547, 14520547, 14812867, 14834707, 14856757, 16025827, 16094707, 18916477, 19197247
Offset: 1

Views

Author

Keywords

Comments

Without the initial 7, this gives primes at which difference pattern X42424Y (X and Y >= 8) occurs in A001223. - Labos Elemer
Subsequence of A022007. - Zak Seidov, Nov 01 2011
From Jean-Christophe Hervé, Sep 27 2014: (Start)
The primes in a sextuple a(n), a(n)+4, a(n)+6, a(n)+10, a(n)+12, a(n)+16 are consecutive since a(n)+2, a(n)+8 and a(n)+14 cannot be prime (multiple of 3).
The prime sextuples starting at a(n) give the highest concentration of primes that can occur on an interval of 17 integers (apart intervals starting at p < 7). It is conjectured that there are infinitely many such sextuples.
For n > 1, the 3 odd integers preceding and the 3 odd integers following the sextuple are not prime: a(n)-2 == a(n)+18 == 0 (mod 5), a(n)-4 == a(n)+20 == 0 (mod 3), a(n)-6 == a(n)+22 == 0 (mod 7) and thus a(n) == 97 (mod 210 = 2*3*5*7). (End)
All terms are congruent to 7 (mod 30). - Zak Seidov, May 07 2017
All terms but the first one are congruent to 97 (mod 210). - M. F. Hasler, Jan 18 2022

Examples

			n=2: 97, 101, 103, 107, 109, 113 are consecutive primes, while 91, 93, 95 and 115, 117 and 119 are not (cf. 4th comment about the border of composites).
		

Crossrefs

Cf. A022007.
Cf. A350826 (number of n-digit terms).

Programs

  • GAP
    P:=Filtered([1,3..2*10^7+1],IsPrime);;  I:=[4,2,4,2,4];;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
    A022008:=List(Positions(List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]),I),j->P[j]); # Muniru A Asiru, Sep 03 2017
  • Magma
    [p: p in PrimesUpTo(2*10^7) | IsPrime(p+4) and IsPrime(p+6) and IsPrime(p+10)and IsPrime(p+12) and IsPrime(p+16)]; // Vincenzo Librandi, Aug 23 2015
    
  • Maple
    for i from 1 to 2*10^5 do if [ithprime(i+1), ithprime(i+2), ithprime(i+3), ithprime(i+4), ithprime(i+5)] = [ithprime(i)+4,ithprime(i)+6,ithprime(i)+10,ithprime(i)+12,ithprime(i)+16] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    lst = {}; Do[p = Prime[n]; If[PrimeQ[p+4] && PrimeQ[p+6] && PrimeQ[p+10] && PrimeQ[p+12] && PrimeQ[p+16], AppendTo[lst, p]], {n, 1000000}]; lst
    Transpose[Select[Partition[Prime[Range[10^6]],6,1],Differences[#]=={4,2,4,2,4}&]][[1]] (* Harvey P. Dale, Mar 15 2015 *)
  • PARI
    p=2;q=3;r=5;s=7;t=11;forprime(u=13,1e9,if(u-p==16 && p%3==1, print1(p", "));p=q;q=r;r=s;s=t;t=u) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    {next_A022008(p, L=Vec(p+1,5), m=210, r=Mod(97,m))=for(i=1,oo, L[i%5+1]+16==(p=nextprime(p+1))&&break; p%m>111 && until(r==p=nextprime((p+8)\/210*210+97),); L[i%5+1]=p); p-16} \\ M. F. Hasler, Jan 18 2022
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e8, 4,6,10,12,16); # Dana Jacobsen, Sep 30 2015
    

A007529 Prime triples: p; p+2 or p+4; p+6 all prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, 1091, 1277, 1297, 1301, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1783, 1867, 1871, 1873, 1993, 1997
Offset: 1

Views

Author

Keywords

Comments

Or, prime(m) such that prime(m+2) = prime(m)+6. - Zak Seidov, May 07 2012

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [1..310] | (NthPrime(n)+6) eq NthPrime(n+2)]; // Bruno Berselli, May 07 2012
    
  • Maple
    N:= 10000: # to get all terms <= N
    Primes:= select(isprime, [seq(2*i+1, i=1..floor((N+5)/2))]):locs:= select(t -> Primes[t+2]-Primes[t]=6, [$1..nops(Primes)-2]):
    Primes[locs]; # Robert Israel, Apr 30 2015
  • Mathematica
    ptrsQ[n_]:=PrimeQ[n+6]&&(PrimeQ[n+2]||PrimeQ[n+4])
    Select[Prime[Range[400]],ptrsQ]  (* Harvey P. Dale, Mar 08 2011 *)
  • PARI
    p=2;q=3;forprime(r=5,1e4,if(r-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, May 07 2012

Formula

a(n) = A098415(n) - 6. - Zak Seidov, Apr 30 2015

A257124 Initial members of prime septuplets.

Original entry on oeis.org

11, 5639, 88799, 165701, 284729, 626609, 855719, 1068701, 1146779, 6560999, 7540439, 8573429, 11900501, 15760091, 17843459, 18504371, 19089599, 21036131, 24001709, 25658441, 39431921, 42981929, 43534019, 45002591, 67816361, 69156539, 74266259, 79208399, 80427029, 84104549, 86818211, 87988709, 93625991, 124066079
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: this sequence out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Cf. A343637 (distance from 10^n to the next septuplet).
Cf. A100418.

Formula

Disjoint union of A022009 and A022010. - M. F. Hasler, Aug 04 2021

A078847 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <= 6 (i.e., when d = 2, 4 or 6) and forming pattern = [2, 4, 6]; short notation = [246] d-pattern.

Original entry on oeis.org

17, 41, 227, 347, 641, 1091, 1277, 1427, 1487, 1607, 2687, 3527, 3917, 4001, 4127, 4637, 4787, 4931, 8231, 9461, 10331, 11777, 12107, 13901, 14627, 20747, 21557, 23741, 25577, 26681, 26711, 27737, 27941, 28277, 29021, 31247, 32057, 32297
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A022004. - R. J. Mathar, Feb 10 2013
a(n) + 12 is the greatest term in the sequence of 4 consecutive primes with 3 consecutive gaps 2, 4, 6. - Muniru A Asiru, Aug 03 2017

Examples

			17, 17+2 = 19, 17+2+4 = 23, 17+2+4+6 = 29 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Cf. A190814[2,4,6,8], A190817[2,4,6,8,10], A190819[2,4,6,8,10,12], A190838[2,4,6,8,10,12,14]

Programs

  • Mathematica
    d = Differences[Prime[Range[10000]]]; Prime[Flatten[Position[Partition[d, 3, 1], {2, 4, 6}]]] (* T. D. Noe, May 23 2011 *)
    Transpose[Select[Partition[Prime[Range[10000]],4,1],Differences[#] == {2,4,6}&]][[1]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

Primes p=prime(i) such that prime(i+1) = p+2, prime(i+2) = p+2+4, prime(i+3) = p+2+4+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009
Additional cross references from Harvey P. Dale, May 10 2014

A257125 Initial members of prime 9-tuplets (or nonuplets).

Original entry on oeis.org

7, 11, 13, 17, 1277, 88789, 113143, 113147, 855709, 74266249, 182403491, 226449521, 252277007, 408936947, 521481197, 626927443, 910935911, 964669609, 1042090781, 1116452627, 1209950867, 1422475909, 1459270271, 1645175087, 2117861719, 2335215973, 2558211559, 2843348351, 2873599429, 2966003057, 3447123283, 3947480417
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Comments

Primes prime(m) such that prime(m+8) = prime(m) + 30. - Zak Seidov, Jul 06 2015

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: this sequence out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.

Programs

  • Magma
    [NthPrime(n): n in [0..2*10^4] | NthPrime(n+8) eq (NthPrime(n) + 30)]; // Vincenzo Librandi, Jul 08 2015
  • Mathematica
    {p, q, r, s, t, u, v, w, x} = Prime@ Range@ 9; lst = {}; While[p < 1000000001, If[p + 30 == x, AppendTo[lst, p]; Print@ p]; {p, q, r, s, t, u, v, w, x} = {q, r, s, t, u, v, w, x, NextPrime@ x}]; lst (* Robert G. Wilson v, Jul 06 2015 *)
    Select[Partition[Prime[Range[5 10^6]],9,1],#[[1]]+30==#[[9]]&][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 01 2024 *)
  • PARI
    main(size)=v=vector(size); i=0; m=1; while(iAnders Hellström, Jul 08 2015
    

A257127 Initial members of prime 10-tuplets (or decaplets).

Original entry on oeis.org

11, 9853497737, 21956291867, 22741837817, 33081664151, 83122625471, 164444511587, 179590045487, 217999764107, 231255798857, 242360943257, 294920291201, 573459229151, 663903555851, 666413245007, 688697679401, 696391309697, 730121110331, 867132039857, 974275568237, 976136848847, 1002263588297
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime quintuplets: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: this sequence out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Showing 1-10 of 80 results. Next