cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A052509 Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 11, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2000

Keywords

Comments

Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).
As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - Paul Barry, Sep 04 2005
Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - N. J. A. Sloane, Mar 03 2018

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  2,  1;
[4] 1, 4,  4,  2,  1;
[5] 1, 5,  7,  4,  2,  1;
[6] 1, 6, 11,  8,  4,  2, 1;
[7] 1, 7, 16, 15,  8,  4, 2, 1;
[8] 1, 8, 22, 26, 16,  8, 4, 2, 1;
[9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;
As a square array, this begins:
  1  1  1  1  1  1 ...
  1  2  2  2  2  2 ...
  1  3  4  4  4  4 ...
  1  4  7  8  8  8 ...
  1  5 11 15 16 ...
  1  6 16 26 31 32 ...
		

Crossrefs

Row sums A000071; Diagonal sums A023435; Mirror A004070.
Columns give A000027, A000124, A000125, A000127, A006261, ...
Partial sums across rows of (extended) Pascal's triangle A052553.

Programs

  • GAP
    A052509:=Flat(List([0..100],n->List([0..n],k->Sum([0..n],m->Binomial(n-k,k-m))))); # Muniru A Asiru, Sat Feb 17 2018
    
  • Haskell
    a052509 n k = a052509_tabl !! n !! k
    a052509_row n = a052509_tabl !! n
    a052509_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
    
  • Magma
    [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 13 2019
    
  • Maple
    a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1,k)+a(n-2,k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d,`,a(n,k)) od: od: # James Sellers, Mar 17 2000
    with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d,`,1) else printf(`%d,`,sum(binomial(n, i), i=0..s-n)) fi; od: od: # James Sellers, Mar 17 2000
  • Mathematica
    Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]
    T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 28 2021 *)
  • PARI
    T(n,k)=sum(m=0,n,binomial(n-k,k-m));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "););print();); /* show triangle */
    
  • Sage
    [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 13 2019

Formula

T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - Wouter Meeussen, Oct 03 2002
From Werner Schulte, Feb 15 2018: (Start)
Referring to the square array T(i,j):
G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).
G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).
Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.
(End)
T(n, k) = hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
From Jianing Song, May 30 2022: (Start)
Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).
T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)

Extensions

More terms from James Sellers, Mar 17 2000
Entry formed by merging two earlier entries. - N. J. A. Sloane, Jun 17 2007
Edited by Johannes W. Meijer, Jul 24 2011

A035317 Pascal-like triangle associated with A000670.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 1, 11, 56, 174, 367, 553, 610, 496, 295, 125
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jul 20 2011: (Start)
The triangle sums, see A180662 for their definitions, link this "Races with Ties" triangle with several sequences, see the crossrefs. Observe that the Kn4 sums lead to the golden rectangle numbers A001654 and that the Fi1 and Fi2 sums lead to the Jacobsthal sequence A001045.
The series expansion of G(x, y) = 1/((y*x-1)*(y*x+1)*((y+1)*x-1)) as function of x leads to this sequence, see the second Maple program. (End)
T(2n,k) = the number of hatted frog arrangements with k frogs on the 2xn grid. See the linked paper "Frogs, hats and common subsequences". - Chris Cox, Apr 12 2024

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  2;
  1,  3,  4,   2;
  1,  4,  7,   6,   3;
  1,  5, 11,  13,   9,   3;
  1,  6, 16,  24,  22,  12,   4;
  1,  7, 22,  40,  46,  34,  16,   4;
  1,  8, 29,  62,  86,  80,  50,  20,  5;
  1,  9, 37,  91, 148, 166, 130,  70, 25,  5;
  1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6;
  ...
		

Crossrefs

Row sums are A000975, diagonal sums are A080239.
Central terms are A014300.
Similar to the triangles A059259, A080242, A108561, A112555.
Cf. A059260.
Triangle sums (see the comments): A000975 (Row1), A059841 (Row2), A080239 (Kn11), A052952 (Kn21), A129696 (Kn22), A001906 (Kn3), A001654 (Kn4), A001045 (Fi1, Fi2), A023435 (Ca2), Gi2 (A193146), A190525 (Ze2), A193147 (Ze3), A181532 (Ze4). - Johannes W. Meijer, Jul 20 2011
Cf. A181971.

Programs

  • Haskell
    a035317 n k = a035317_tabl !! n !! k
    a035317_row n = a035317_tabl !! n
    a035317_tabl = map snd $ iterate f (0, [1]) where
       f (i, row) = (1 - i, zipWith (+) ([0] ++ row) (row ++ [i]))
    -- Reinhard Zumkeller, Jul 09 2012
    
  • Maple
    A035317 := proc(n,k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
    A035317 := proc(n,k): coeff(coeftayl(1/((y*x-1)*(y*x+1)*((y+1)*x-1)), x=0, n), y, k) end: seq(seq(A035317(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
  • Mathematica
    t[n_, k_] := (-1)^k*(((-1)^k*(n+2)!*Hypergeometric2F1[1, n+3, k+2, -1])/((k+1)!*(n-k+1)!) + 2^(k-n-2)); Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011, after Johannes W. Meijer *)
  • PARI
    {T(n,k)=if(n==k,(n+2)\2,if(k==0,1,if(n>k,T(n-1,k-1)+T(n-1,k))))}
    for(n=0,12,for(k=0,n,print1(T(n,k),","));print("")) \\ Paul D. Hanna, Jul 18 2012
    
  • Sage
    def A035317_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n+2, k) for k in (1..n)]
    for n in (1..11): print(A035317_row(n)) # Peter Luschny, Mar 16 2016

Formula

T(n,k) = Sum_{j=0..floor(n/2)} binomial(n-2j, k-2j). - Paul Barry, Feb 11 2003
From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..k}((-1)^(i+k) * binomial(i+n-k+1,i)). (Mendelson)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = floor(n/2) + 1. (Mendelson)
Sum_{k = 0..n}((-1)^k * (n-k+1)^n * T(n, k)) = A000670(n). (Mendelson)
T(n, n-k) = A128176(n, k); T(n+k, n-k) = A158909(n, k); T(2*n-k, k) = A092879(n, k). (End)
T(2*n+1,n) = A014301(n+1); T(2*n+1,n+1) = A026641(n+1). - Reinhard Zumkeller, Jul 19 2012

Extensions

More terms from James Sellers

A013979 Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0

Views

Author

Keywords

Comments

For n>0, number of compositions (ordered partitions) of n into 2's, 3's and 4's. - Len Smiley, May 08 2001
Diagonal sums of trinomial triangle A071675 (Riordan array (1, x*(1+x+x^2))). - Paul Barry, Feb 15 2005
For n>1, a(n) is number of compositions of n-2 into parts 1 and 2 with no 3 consecutive 1's. For example: a(7) = 5 because we have: 2+2+1, 2+1+2, 1+2+2, 1+2+1+1, 1+1+2+1. - Geoffrey Critzer, Mar 15 2014
In the same way [per 2nd comment for A006498, by Sreyas Srinivasan] that the sum of any two alternating terms (terms separated by one term) of A006498 produces a term from A000045 (the Fibonacci sequence), so it could therefore be thought of as a "metaFibonacci," the sum of any two (nonalternating) terms of this sequence produces a term from A000930 (Narayana’s cows), so this sequence could analogously be called "meta-Narayana’s cows" (e.g. 4+5=9, 5+8=13, 8+11=19, 11+17=28). - Michael Cohen and Yasuyuki Kachi, Jun 13 2024

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 5*x^7 + 8*x^8 + 11*x^9 + ...
		

Crossrefs

Cf. A060945 (Ordered partitions into 1's, 2's and 4's).
First differences of A023435.

Programs

  • Haskell
    a013979 n = a013979_list !! n
    a013979_list = 1 : 0 : 1 : 1 : zipWith (+) a013979_list
       (zipWith (+) (tail a013979_list) (drop 2 a013979_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1+x)*(1-x-x^3)) )); // G. C. Greubel, Jul 17 2023
    
  • Mathematica
    a[n_]:= If[n<0, SeriesCoefficient[x^4/(1 +x +x^2 -x^4), {x, 0, -n}], SeriesCoefficient[1/(1 -x^2 -x^3 -x^4), {x,0,n}]]; (* Michael Somos, Jun 20 2015 *)
    LinearRecurrence[{0,1,1,1}, {1,0,1,1}, 50] (* G. C. Greubel, Jul 17 2023 *)
  • SageMath
    @CachedFunction
    def b(n): return 1 if (n<3) else b(n-1) + b(n-3) # b = A000930
    def A013979(n): return ((-1)^n +2*b(n) -b(n-1) +b(n-2) -int(n==1))/3
    [A013979(n) for n in (0..50)] # G. C. Greubel, Jul 17 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..floor(n/2)} C(k, 2i+3k-n)*C(2i+3k-n, i). - Paul Barry, Feb 15 2005
a(n) = a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
a(n) + a(n+1) = A000930(n+1). - R. J. Mathar, Mar 14 2011
a(n) = (1/3)*(A000930(n) + A097333(n-2) + (-1)^n), n>1. - Ralf Stephan, Aug 15 2013
a(n) = (-1)^n * A077889(-4-n) = A107458(n+4) for all n in Z. - Michael Somos, Jun 20 2015
a(n) = Sum_{i=0..floor(n/2)} A078012(n-2*i). - Paul Curtz, Aug 18 2021
a(n) = (1/3)*((-1)^n + 2*b(n) - b(n-1) + b(n-2) - [n=1]), where b(n) = A000930(n). - G. C. Greubel, Jul 17 2023

A260710 Expansion of 1/(1 - x - x^2 - x^4 + x^5 + x^7).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 43, 69, 116, 188, 313, 511, 846, 1386, 2288, 3756, 6191, 10174, 16756, 27552, 45357, 74604, 122787, 201996, 332414, 546901, 899946, 1480699, 2436459, 4008858, 6596366, 10853563, 17858788, 29384804, 48350401, 79555943, 130902711
Offset: 0

Views

Author

David Neil McGrath, Jul 30 2015

Keywords

Comments

This sequence counts partially ordered partitions of (n) into parts 1,2,3,4 where the order (position) of adjacent pairs of numbers (1,2);(2,3);(3,4) is unimportant. Alternatively the order of the complementary pairs (1,4);(1,3);(2,4) is important.

Examples

			There are 25 partially ordered partitions of 7, i.e., a(7) = 25. These are (43=34),(421=412),(124=214),(241),(142),(4111),(1411),(1141),(1114),(331),(313),(133),(1132=1123),(2131=1231),(1312=1321),(2311=3211),(31111),(13111),(11311),(11131),(11113),(2221=four),(22111=ten),(211111=six),(1111111).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,3,6,9,16]; [n le 7 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Aug 04 2015
    
  • Mathematica
    LinearRecurrence[{1, 1, 0, 1, -1, 0, -1}, {1, 1, 2, 3, 6, 9, 16}, 50] (* Vincenzo Librandi, Aug 04 2015 *)
  • PARI
    Vec(1/(1 - x - x^2 - x^4 + x^5 + x^7) + O(x^50)) \\ Michel Marcus, Aug 06 2015

Formula

G.f: 1/(1 - x - x^2 - x^4 + x^5 + x^7).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-5) - a(n-7).
Construct the matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,1,-1,0,-1) and S=(0,1,0,...) (A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). a(n) = Sum_{j=1..n} T(n,j).

A171997 a(n) = a(n-1) + a(n-2) - floor(a(n-2)/2) - floor(a(n-5)/2); initial terms are 1, 1, 2, 3, 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 35, 42, 50, 59, 70, 83, 97, 114, 134, 156, 182, 212, 246, 285, 330, 382, 441, 509, 588, 678, 781, 900, 1037, 1193, 1373, 1580, 1817, 2089, 2402, 2761, 3172, 3645, 4187, 4809, 5523, 6342, 7282, 8360
Offset: 1

Views

Author

Roger L. Bagula, Nov 22 2010

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 1.14710876512065387719410850648860644150605499412513....
a(n) = A062435(n+2) for n < 15.

Crossrefs

Cf. A062435 (integer part of log(n!)^log(log(1 + n))), A023434 (a(n)=a(n-1)+a(n-2)-a(n-4)), A023435 (a(n)=a(n-1)+a(n-2)-a(n-5)), A023436 (a(n)=a(n-1)+a(n-2)-a(n-6)), A023437 (a(n)=a(n-1)+a(n-2)-a(n-7)), A023438 (a(n)=a(n-1)+a(n-2)-a(n-8)), A023439 (a(n)=a(n-1)+a(n-2)-a(n-9)), A023440 (a(n)=a(n-1)+a(n-2)+a(n-10)), A023441 (a(n)=a(n-1)+a(n-2)-a(n-11)), A023442 (a(n)=a(n-1)+a(n-2)-a(n-12)), A000044 (a(n)=a(n-1)+a(n-2)-a(n-13)), A173199 (a(n)=a(n-1)+a(n-2)-floor(a(n-3)/2)-floor(a(n-8)/2)).

Programs

  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else Self(n-1) + Self(n-2) - Floor(Self(n-2)/2) - Floor(Self(n-5)/2): n in [1..60]]; // Vincenzo Librandi, Jun 24 2015
  • Mathematica
    f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;
    f[n_] := f[n] = f[n - 1] + f[n - 2] - Floor[f[n - 2]/2] - Floor[f[n - 5]/2]
    Table[f[n], {n, 0, 50}]

Extensions

Offset changed from 0 to 1 by Klaus Brockhaus, Nov 29 2010

A260917 Expansion of 1/(1 - x - x^2 - x^3 + x^6 + x^7).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 74, 132, 236, 422, 754, 1348, 2409, 4305, 7694, 13750, 24573, 43915, 78481, 140255, 250652, 447944, 800528, 1430636, 2556712, 4569140, 8165581, 14592837, 26079086, 46606340, 83290915, 148850489, 266013023, 475396009, 849587598, 1518311204, 2713397556, 4849154954, 8666000202
Offset: 0

Views

Author

David Neil McGrath, Aug 04 2015

Keywords

Comments

This sequence counts the partially ordered partitions of (n) into parts 1,2,3,4 where the order (position) of adjacent pairs (1,3);(3,4);(2,4) is unimportant. Alternatively the order of complementary pairs (1,2);(1,4);(2,3) is important.

Examples

			a(7)=41; the corresponding partitions (cf. comment) are: (43), (241=421), (124=142), (412), (214), (4111), (1411), (1141), (1114), (331=313=133), (322), (232), (223), (3112=1312=1132), (2113=2131=2311), (1213=1231), (3121=1321), (3211), (1123), (31111=13111=11311=11131=11113), (2221)=four, (22111)=ten, (211111)=six, (1111111).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,4,7,13,23]; [n le 7 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) - Self(n-6) - Self(n-7): n in [1..45]]; // Vincenzo Librandi, Aug 07 2015
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 - x^3 + x^6 + x^7), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2015 *)
    LinearRecurrence[{1,1,1,0,0,-1,-1},{1,1,2,4,7,13,23},50] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    Vec(1/(1 - x - x^2 - x^3 + x^6 + x^7) + O(x^50)) \\ Michel Marcus, Aug 06 2015
    

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-6) - a(n-7).
G.f.: 1/((1 - x)*(1 - x^2 - 2*x^3 - 2*x^4 - 2*x^5 - x^6)).
Showing 1-6 of 6 results.