cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A021009 Triangle of coefficients of Laguerre polynomials n!*L_n(x) (rising powers of x).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 6, -18, 9, -1, 24, -96, 72, -16, 1, 120, -600, 600, -200, 25, -1, 720, -4320, 5400, -2400, 450, -36, 1, 5040, -35280, 52920, -29400, 7350, -882, 49, -1, 40320, -322560, 564480, -376320, 117600, -18816, 1568, -64, 1, 362880, -3265920
Offset: 0

Views

Author

Keywords

Comments

In absolute values, this sequence also gives the lower triangular readout of the exponential of a matrix whose entry {j+1,j} equals (j-1)^2 (and all other entries are zero). - Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006
A partial permutation on a set X is a bijection between two subsets of X. |T(n,n-k)| equals the numbers of partial permutations of an n-set having domain cardinality equal to k. Let E denote the operator D*x*D, where D is the derivative operator d/dx. Then E^n = Sum_{k = 0..n} |T(n,k)|*x^k*D^(n+k). - Peter Bala, Oct 28 2008
The unsigned triangle is the generalized Riordan array (exp(x), x) with respect to the sequence n!^2 as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!*(n+1)! is A105278). - Peter Bala, Aug 15 2013
The unsigned triangle appears on page 83 of Ser (1933). - N. J. A. Sloane, Jan 16 2020

Examples

			The triangle a(n,m) starts:
n\m   0       1      2       3      4      5    6  7  8
0:    1
1:    1      -1
2:    2      -4      1
3:    6     -18      9      -1
4:   24     -96     72     -16      1
5:  120    -600    600    -200     25     -1
6:  720   -4320   5400   -2400    450    -36    1
7: 5040  -35280  52920  -29400   7350   -882   49  -1
8:40320 -322560 564480 -376320 117600 -18816 1568 -64 1
...
From _Wolfdieter Lang_, Jan 31 2013 (Start)
Recurrence (usual one): a(4,1) = 7*(-18) - 6 - 3^2*(-4) = -96.
Recurrence (simplified version): a(4,1) = 5*(-18) - 6 = -96.
Recurrence (Sage program): |a(4,1)| = 6 + 3*18 + 4*9 = 96. (End)
Embedded recurrence (Maple program): a(4,1) = -4!*(1 + 3) = -96.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.

Crossrefs

Row sums give A009940, alternating row sums are A002720.
Column sequences (unsigned): A000142, A001563, A001809-A001812 for m=0..5.
Central terms: A295383.
For generators and generalizations see A132440.

Programs

  • Magma
    /* As triangle: */ [[((-1)^k)*Factorial(n)*Binomial(n, k)/Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 18 2020
  • Maple
    A021009 := proc(n,k) local S; S := proc(n,k) option remember; `if`(k = 0, 1, `if`( k > n, 0, S(n-1,k-1)/k + S(n-1,k))) end: (-1)^k*n!*S(n,k) end: seq(seq(A021009(n,k), k=0..n), n=0..8); # Peter Luschny, Jun 21 2017
    # Alternative for the unsigned case (function RiordanSquare defined in A321620):
    RiordanSquare(add(x^m, m=0..10), 10, true); # Peter Luschny, Dec 06 2018
  • Mathematica
    Flatten[ Table[ CoefficientList[ n!*LaguerreL[n, x], x], {n, 0, 9}]] (* Jean-François Alcover, Dec 13 2011 *)
  • PARI
    p(n) = denominator(bestapprPade(Ser(vector(2*n, k, (k-1)!))));
    concat(1, concat(vector(9, n, Vec(-p(n)))))  \\ Gheorghe Coserea, Dec 01 2016
    
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( sum(i=0, n, binomial(n, n-i) * (-x)^i / i!), k))}; /* Michael Somos, Dec 01 2016 */
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
    
  • Sage
    def A021009_triangle(dim): # computes unsigned T(n,k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2*k+1)*M[n-1,k]+(k+1)^2*M[n-1,k+1]
        return M
    A021009_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = ((-1)^m)*n!*binomial(n, m)/m! = ((-1)^m)*((n!/m!)^2)/(n-m)! if n >= m, otherwise 0.
E.g.f. for m-th column: (-x/(1-x))^m /((1-x)*m!), m >= 0.
Representation (of unsigned a(n, m)) as special values of Gauss hypergeometric function 2F1, in Maple notation: n!*(-1)^m*hypergeom([ -m, n+1 ], [ 1 ], 1)/m!. - Karol A. Penson, Oct 02 2003
Sum_{m>=0} (-1)^m*a(n, m) = A002720(n). - Philippe Deléham, Mar 10 2004
E.g.f.: (1/(1-x))*exp(x*y/(x-1)). - Vladeta Jovovic, Apr 07 2005
Sum_{n>=0, m>=0} a(n, m)*(x^n/n!^2)*y^m = exp(x)*BesselJ(0, 2*sqrt(x*y)). - Vladeta Jovovic, Apr 07 2005
Matrix square yields the identity matrix: L^2 = I. - Paul D. Hanna, Nov 22 2008
From Tom Copeland, Oct 20 2012: (Start)
Symbolically, with D=d/dx and LN(n,x)=n!L_n(x), define :Dx:^j = D^j x^j, :xD:^j = x^j D^j, and LN(.,x)^j = LN(j,x) = row polynomials of A021009.
Then some useful relations are
1) (:Dx:)^n = LN(n,-:xD:) [Rodriguez formula]
2) (xDx)^n = x^n D^n x^n = x^n LN(n,-:xD:) [See Al-Salam ref./A132440]
3) (DxD)^n = D^n x^n D^n = LN(n,-:xD:) D^n [See ref. in A132440]
4) umbral composition LN(n,LN(.,x))= x^n [See Rota ref.]
5) umbral comp. LN(n,-:Dx:) = LN(n,-LN(.,-:xD:)) = 2^n LN(n,-:xD:/2)= n! * (n-th row e.g.f.(x) of A038207 with x replaced by :xD:).
An example for 2) is the operator (xDx)^2 = (xDx)(xDx) = xD(x^2 + x^3D)= 2x^2 + 4x^3 D + x^4 D^2 = x^2 (2 + 4x D + x^2 D^2) = x^2 (2 + 4 :xD: + :xD:^2) = x^2 LN(2,-:xD:) = x^2 2! L_2(-:xD:).
An example of the umbral composition in 5) is given in A038207.
The op. xDx is related to the Euler/binomial transformation for power series/o.g.f.s. through exp(t*xDx) f(x) = f[x/(1-t*x)]/(1-t*x) and to the special Moebius/linear fractional/projective transformation z exp(-t*zDz)(1/z)f(z) = f(z/(1+t*z)).
For a general discussion of umbral calculus see the Gessel link. (End)
From Wolfdieter Lang, Jan 31 2013: (Start)
Standard recurrence derived from the three term recurrence of the orthogonal polynomials system {n!*L(n,x)}: L(n,x) = (2*n - 1 - x)*L(n-1,x) - (n-1)^2*L(n-2,x), n>=1, L(-1,x) = 0, L(0,x) = 1.
a(n,m) = (2*n-1)*a(n-1,m) - a(n-1,m-1) - (n-1)^2*a(n-2,m),
n >=1, with a(n,-1) = 0, a(0,0) = 1, a(n,m) = 0 if n < m. (compare this with Peter Luschny's program for the unsigned case |a(n,m)| = (-1)^m*a(n,m)).
Simplified recurrence (using column recurrence from explicit form for a(n,m) given above):
a(n,m) = (n+m)*a(n-1,m) - a(n-1,m-1), n >= 1, a(0,0) = 1, a(n,-1) = 0, a(n,m) = 0 if n < m. (End)
|T(n,k)| = [x^k] (-1)^n*U(-n,1,-x), where U(a,b,x) is Kummer's hypergeometric U function. - Peter Luschny, Apr 11 2015
T(n,k) = (-1)^k*n!*S(n,k) where S(n,k) is recursively defined by: "if k = 0 then 1 else if k > n then 0 else S(n-1,k-1)/k + S(n-1,k)". - Peter Luschny, Jun 21 2017
The unsigned case is the exponential Riordan square (see A321620) of the factorial numbers. - Peter Luschny, Dec 06 2018
Omitting the diagonal and signs, this array is generated by the commutator [D^n,x^n] = D^n x^n - x^n D^n = Sum_{i=0..n-1} ((n!/i!)^2/(n-i)!) x^i D^i on p. 9 of both papers by Belov-Kanel and Kontsevich. - Tom Copeland, Jan 23 2020

Extensions

Name changed and table given by Wolfdieter Lang, Nov 28 2011

A025167 E.g.f: exp(x/(1-2*x))/(1-2*x).

Original entry on oeis.org

1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
Offset: 0

Views

Author

Keywords

Comments

Polynomials in A021009 evaluated at -2.
Also, a(n) is the number of signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (see the Hardt and Troyka reference). - Justin M. Troyka, Aug 05 2011

Examples

			Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1).  Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
		

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*KummerU(-n, 1, -1/2):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
  • Mathematica
    Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
    f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
    a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a  (* Justin M. Troyka, Aug 05 2011 *)
  • PARI
    {a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)}

Formula

a(n) = Sum_{k=0..n} k!*2^k*binomial(n, k)^2. - Robert G. Wilson v, Mar 16 2005 [corrected by Ilya Gutkovskiy, Oct 01 2018]
a(n) = Sum_{k=0..n-1} 2^{n-1-k}*[(n-1)! ]^2/[(k!)^2*(n-1-k)! ]. - Huajun Huang (huanghu(AT)auburn.edu), Oct 10 2005
a(0) = 1; a(1) = 3; a(n) = (4n-1) * a(n-1) - 4 (n-1)^2 * a(n-2) for n >= 2. - Justin M. Troyka, Aug 05 2011
E.g.f.: exp(2*x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
a(n) ~ n^(n+1/4)*2^(n-1/4)*exp(-n+sqrt(2*n)-1/4) * (1 + sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013
a(n) = (-2)^n*KummerU(-n, 1, -1/2). - Peter Luschny, Feb 12 2020

Extensions

More terms from Vladeta Jovovic, Jan 29 2003

A330497 a(n) = n! * Sum_{k=0..n} (-1)^k * binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 0, 1, 26, 1089, 70124, 6495985, 821315214, 136115947009, 28651724077976, 7470040450004001, 2363470644596843330, 892244303052345224641, 396227360441775922668036, 204487588996059177697597969, 121370399839482643287189048374
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[(-1)^k*Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[(-1)^k Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, 1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[-x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = n! * [x^n] exp(-x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselJ(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019
Showing 1-3 of 3 results.