cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A343840 a(n) = Sum_{k=0..n}(-1)^(n-k)*binomial(n, k)*|A021009(n, k)|.

Original entry on oeis.org

1, 0, -5, 22, 9, -1244, 14335, -79470, -586943, 25131304, -434574909, 4418399470, 8524321465, -1771817986548, 53502570125719, -1052208254769014, 11804172888840705, 131741085049224400, -12970386000411511733, 482732550618027365574, -12599999790172579025879
Offset: 0

Views

Author

Peter Luschny, May 04 2021

Keywords

Comments

Related to the coefficient triangle of generalized Laguerre polynomials A021009.

Crossrefs

Programs

  • Maple
    T := proc(n, k) local S; S := proc(n, k) option remember;
    `if`(k = 0, 1, `if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*S(n, k) end:
    a := n -> add((-1)^(n-j)*T(n, j)*binomial(n, j), j=0..n): seq(a(n), n=0..20);
  • PARI
    rowT(n) = Vecrev(n!*pollaguerre(n)); \\ A021009
    a(n) = my(v=rowT(n)); sum(k=0, n, (-1)^(n-k)*binomial(n, k)*abs(v[k+1])); \\ Michel Marcus, May 04 2021

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = BesselJ(0,2*sqrt(x)) * Sum_{n>=0} x^n / n!^3. - Ilya Gutkovskiy, Jun 19 2022
a(n) = Sum_{k=0..n} (-1)^k*k!*binomial(n,k)^3. - Ridouane Oudra, Jul 11 2025
Recurrence: n*(8*n - 11)*a(n) = -(n-1)*(24*n^2 - 49*n + 21)*a(n-1) - (n-1)*(24*n^3 - 33*n^2 - 14*n + 18)*a(n-2) - (n-2)^3*(n-1)*(8*n - 3)*a(n-3). - Vaclav Kotesovec, Jul 11 2025

A070075 Stirling transform of A021009.

Original entry on oeis.org

1, 2, 9, 57, 464, 4593, 53381, 711056, 10665071, 177698377, 3253933294, 64917524367, 1400923403957, 32503510579738, 806599849548101, 21313355891736741, 597326671763101944
Offset: 0

Views

Author

Karol A. Penson, Apr 22 2002

Keywords

Crossrefs

Cf. A021009.

Programs

  • Mathematica
    Flatten[{1, Table[Sum[StirlingS2[n, k]*k!*LaguerreL[k, -1], {k,1,n}], {n,1,20}]}] (* Vaclav Kotesovec, Nov 13 2017 *)

Formula

In Maple notation, a(0)=1, a(n)= sum(stirling2(n, k)*k!*LaguerreL(k, -1), k=1..n), n=1, 2... . E.g.f.: exp((exp(x)-1)/(2-exp(x)))/(2-exp(x))
a(n) ~ exp(1/(4*log(2)) - 3/4 + sqrt(2*n/log(2)) - n) * n^(n + 1/4) / (2^(5/4) * (log(2))^(n + 3/4)). - Vaclav Kotesovec, Nov 13 2017

A343580 a(n) = abs(A021009(n, floor(n/2))).

Original entry on oeis.org

1, 1, 4, 18, 72, 600, 2400, 29400, 117600, 1905120, 7620480, 153679680, 614718720, 14841066240, 59364264960, 1669619952000, 6678479808000, 214453407168000, 857813628672000, 30967071995059200, 123868287980236800, 4965992272662220800, 19863969090648883200
Offset: 0

Views

Author

Peter Luschny, Apr 20 2021

Keywords

Comments

Absolute value of the middle coefficient of the Laguerre polynomials.

Crossrefs

Programs

  • Mathematica
    a[n_] := Abs[Hypergeometric2F1[-Floor[n/2], n+1, 1, 1] n!/Floor[n/2]!];
    Table[a[n], {n, 0, 20}]
  • PARI
    a(n) = abs(n!*polcoef(pollaguerre(n), n\2)); \\ Michel Marcus, Apr 21 2021
  • SageMath
    def a(n): return binomial(n, n - n//2)*falling_factorial(n, n - n//2)
    print([a(n) for n in range(23)])
    

Formula

a(n) = ((-1)^floor(n/2)*n!/floor(n/2)!)*hypergeom([n + 1, -floor(n/2)], [1], 1).
a(n) = binomial(n, floor(n/2))*FallingFactorial(n, n - floor(n/2)).

A000254 Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.

Original entry on oeis.org

0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880, 19802759040, 283465647360, 4339163001600, 70734282393600, 1223405590579200, 22376988058521600, 431565146817638400, 8752948036761600000, 186244810780170240000
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of n+1 elements with exactly two cycles.
Number of cycles in all permutations of [n]. Example: a(3) = 11 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) have 11 cycles altogether. - Emeric Deutsch, Aug 12 2004
Row sums of A094310: In the symmetric group S_n, each permutation factors into k independent cycles; a(n) = sum k over S_n. - Harley Flanders (harley(AT)umich.edu), Jun 28 2004
The sum of the top levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, the levels of their last columns being 2 and 1, respectively. - Emeric Deutsch, Aug 12 2006
a(n) is divisible by n for all composite n >= 6. a(2*n) is divisible by 2*n + 1. - Leroy Quet, May 20 2007
For n >= 2 the determinant of the n-1 X n-1 matrix M(i,j) = i + 2 for i = j and 1 otherwise (i,j = 1..n-1). E.g., for n = 3 the determinant of [(3, 1), (1, 4)]. See 53rd Putnam Examination, 1992, Problem B5. - Franz Vrabec, Jan 13 2008, Mar 26 2008
The numerator of the fraction when we sum (without simplification) the terms in the harmonic sequence. (1 + 1/2 = 2/2 + 1/2 = 3/2; 3/2 + 1/3 = 9/6 + 2/6 = 11/6; 11/6 + 1/4 = 44/24 + 6/24 = 50/24;...). The denominator of this fraction is n!*A000142. - Eric Desbiaux, Jan 07 2009
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=1) ~ exp(-x)/x^2*(1 - 3/x + 11/x^2 - 50/x^3 + 274/x^4 - 1764/x^5 + 13068/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the number of permutations of [n+1] containing exactly 2 cycles. Example: a(2) = 3 because the permutations (1)(23), (12)(3), (13)(2) are the only permutations of [3] with exactly 2 cycles. - Tom Woodward (twoodward(AT)macalester.edu), Nov 12 2009
It appears that, with the exception of n= 4, a(n) mod n = 0 if n is composite and = n-1 if n is prime. - Gary Detlefs, Sep 11 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012
Numerator of harmonic number H(n) = Sum_{i=1..n} 1/i when not reduced. See A001008 (Wolstenholme numbers) for the reduced numerators. - Rahul Jha, Feb 18 2015
The Stirling transform of this sequence is A222058(n) (Harmonic-geometric numbers). - Anton Zakharov, Aug 07 2016
a(n) is the (n-1)-st elementary symmetric function of the first n numbers. - Anton Zakharov, Nov 02 2016
The n-th iterated integral of log(x) is x^n * (n! * log(x) - a(n))/(n!)^2 + a polynomial of degree n-1 with arbitrary coefficients. This can be proven using the recurrence relation a(n) = (n-1)! + n*a(n-1). - Mohsen Maesumi, Oct 31 2018
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Aug 08 2019
Total number of left-to-right maxima (or minima) in all permutations of [n]. a(3) = 11 = 3+2+2+2+1+1: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21. - Alois P. Heinz, Aug 01 2020

Examples

			(1-x)^-1 * (-log(1-x)) = x + 3/2*x^2 + 11/6*x^3 + 25/12*x^4 + ...
G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identities 186-190.
  • N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1986, see page 2. MR0863284 (89d:41049)
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation).
  • K. Javorszky, Natural Orders: De Ordinibus Naturalibus, 2016, ISBN 978-3-99057-139-2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a:=[]; for n in [1..22] do a:=a cat [Abs(StirlingFirst(n,2))]; end for; a; // Marius A. Burtea, Jan 01 2020
  • Maple
    A000254 := proc(n) option remember; if n<=1 then n else n*A000254(n-1)+(n-1)!; fi; end: seq(A000254(n),n=0..21);
    a := n -> add(n!/k, k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[ (PolyGamma[ m ]+EulerGamma) (m-1)!, {m, 1, 24} ] (* Wouter Meeussen *)
    Table[ n!*HarmonicNumber[n], {n, 0, 19}] (* Robert G. Wilson v, May 21 2005 *)
    Table[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}],{n,1,30}] (* Alexander Adamchuk, Jul 11 2006 *)
    Abs[StirlingS1[Range[20],2]] (* Harvey P. Dale, Aug 16 2011 *)
    Table[Gamma'[n + 1] /. EulerGamma -> 0, {n, 0, 30}] (* Li Han, Feb 14 2024*)
  • Maxima
    a(n):=(-1)^(n+1)/2*(n+1)*sum(k*bern(k-1)*stirling1(n,k),k,1,n); /* Vladimir Kruchinin, Nov 20 2016 */
    
  • MuPAD
    A000254 := proc(n) begin n*A000254(n-1)+fact(n-1) end_proc: A000254(1) := 1:
    
  • PARI
    {a(n) = if( n<0, 0, (n+1)! / 2 * sum( k=1, n, 1 / k / (n+1-k)))} /* Michael Somos, Feb 05 2004 */
    
  • Sage
    [stirling_number1(i, 2) for i in range(1, 22)]  # Zerinvary Lajos, Jun 27 2008
    

Formula

Let P(n,X) = (X+1)*(X+2)*(X+3)*...*(X+n); then a(n) is the coefficient of X; or a(n) = P'(n,0). - Benoit Cloitre, May 09 2002
Sum_{k > 0} a(k) * x^k/ k!^2 = exp(x) *(Sum_{k>0} (-1)^(k+1) * x^k / (k * k!)). - Michael Somos, Mar 24 2004; corrected by Warren D. Smith, Feb 12 2006
a(n) is the coefficient of x^(n+2) in (-log(1-x))^2, multiplied by (n+2)!/2.
a(n) = n! * Sum_{i=1..n} 1/i = n! * H(n), where H(n) = A001008(n)/A002805(n) is the n-th harmonic number.
a(n) ~ 2^(1/2)*Pi^(1/2)*log(n)*n^(1/2)*e^-n*n^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: log(1 - x) / (x-1). (= (log(1 - x))^2 / 2 if offset 1). - Michael Somos, Feb 05 2004
D-finite with recurrence: a(n) = a(n-1) * (2*n - 1) - a(n-2) * (n - 1)^2, if n > 1. - Michael Somos, Mar 24 2004
a(n) = A081358(n)+A092691(n). - Emeric Deutsch, Aug 12 2004
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n, k)/k. - Vladeta Jovovic, Jan 29 2005
p^2 divides a(p-1) for prime p > 3. a(n) = (Sum_{i=1..n} 1/i) / Product_{i=1..n} 1/i. - Alexander Adamchuk, Jul 11 2006
a(n) = 3* A001710(n) + 2* A001711(n-3) for n > 2; e.g., 11 = 3*3 + 2*1, 50 = 3*12 + 2*7, 274 = 3*60 + 2*47, ... - Gary Detlefs, May 24 2010
a(n) = A138772(n+1) - A159324(n). - Gary Detlefs, Jul 05 2010
a(n) = A121633(n) + A002672(n). - Gary Detlefs, Jul 18 2010
a(n+1) = Sum_{i=1..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 14 2010
From Gary Detlefs, Sep 11 2010: (Start)
a(n) = (a(n-1)*(n^2 - 2*n + 1) + (n + 1)!)/(n - 1) for n > 2.
It appears that, with the exception of n = 2, (a(n+1)^2 - a(n)^2) mod n^2 = 0 if n is composite and 4*n if n is prime.
It appears that, with the exception of n = 2, (a(n+1)^3 - a(n)^2) mod n = 0 if n is composite and n - 2 if n is prime.
It appears that, with the exception of n = 2, (a(n)^2 + a(n+1)^2) mod n = 0 if n is composite and = 2 if n is prime. (End)
a(n) = Integral_{x=0..oo} (x^n - n!)*log(x)*exp(-x) dx. - Groux Roland, Mar 28 2011
a(n) = 3*n!/2 + 2*(n-2)!*Sum_{k=0..n-3} binomial(k+2,2)/(n-2-k) for n >= 2. - Gary Detlefs, Sep 02 2011
a(n)/(n-1)! = ml(n) = n*ml(n-1)/(n-1) + 1 for n > 1, where ml(n) is the average number of random draws from an n-set with replacement until the total set has been observed. G.f. of ml: x*(1 - log(1 - x))/(1 - x)^2. - Paul Weisenhorn, Nov 18 2011
a(n) = det(|S(i+2, j+1)|, 1 <= i,j <= n-2), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
E.g.f.: x/(1 - x)*E(0)/2, where E(k) = 2 + E(k+1)*x*(k + 1)/(k + 2). - Sergei N. Gladkovskii, Jun 01 2013 [Edited by Michael Somos, Nov 28 2013]
0 = a(n) * (a(n+4) - 6*a(n+3) + 7*a(n+2) - a(n+1)) - a(n+1) * (4*a(n+3) - 6*a(n+2) + a(n+1)) + 3*a(n+2)^2 unless n=0. - Michael Somos, Nov 28 2013
For a simple way to calculate the sequence, multiply n! by the integral from 0 to 1 of (1 - x^n)/(1 - x) dx. - Rahul Jha, Feb 18 2015
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Inverse binomial transform of A073596.
a(n) ~ sqrt(2*Pi*n) * n^n * (log(n) + gamma)/exp(n), where gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = ((-1)^(n+1)/2*(n+1))*Sum_{k=1..n} k*Bernoulli(k-1)*Stirling1(n,k). - Vladimir Kruchinin, Nov 20 2016
a(n) = (n)! * (digamma(n+1) + gamma), where gamma is the Euler-Mascheroni constant A001620. - Pedro Caceres, Mar 10 2018
From Andy Nicol, Oct 21 2021: (Start)
Gamma'(x) = a(x-1) - (x-1)!*gamma, where Gamma'(x) is the derivative of the gamma function at positive integers and gamma is the Euler-Mascheroni constant. E.g.:
Gamma'(1) = -gamma, Gamma'(2) = 1-gamma, Gamma'(3) = 3-2*gamma,
Gamma'(22) = 186244810780170240000 - 51090942171709440000*gamma. (End)
From Peter Bala, Feb 03 2022: (Start)
The following are all conjectural:
E.g.f.: for nonzero m, (1/m)*Sum_{n >= 1} (-1)^(n+1)*(1/n)*binomial(m*n,n)* x^n/(1 - x)^(m*n+1) = x + 3*x^2/2! + 11*x^3/3! + 50*x^4/4! + ....
For nonzero m, a(n) = (1/m)*n!*Sum_{k = 1..n} (-1)^(k+1)*(1/k)*binomial(m*k,k)* binomial(n+(m-1)*k,n-k).
a(n)^2 = (1/2)*n!^2*Sum_{k = 1..n} (-1)^(k+1)*(1/k^2)*binomial(n,k)* binomial(n+k,k). (End)
From Mélika Tebni, Jun 20 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A021009(n, k+1).
a(n) = Sum_{k=0..n} k!*A094587(n, k+1). (End)
a(n) = n! * 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n - 1)^2/((2*n - 1)))))). - Peter Bala, Mar 16 2024

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A038207 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 8, 12, 6, 1, 16, 32, 24, 8, 1, 32, 80, 80, 40, 10, 1, 64, 192, 240, 160, 60, 12, 1, 128, 448, 672, 560, 280, 84, 14, 1, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 1024, 5120, 11520, 15360, 13440, 8064, 3360, 960, 180, 20, 1
Offset: 0

Views

Author

Keywords

Comments

This infinite matrix is the square of the Pascal matrix (A007318) whose rows are [ 1,0,... ], [ 1,1,0,... ], [ 1,2,1,0,... ], ...
As an upper right triangle, table rows give number of points, edges, faces, cubes,
4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009
Number of different partial sums of 1+[1,1,2]+[2,2,3]+[3,3,4]+[4,4,5]+... with entries that are zero removed. - Jon Perry, Jan 01 2004
Row sums are powers of 3 (A000244), antidiagonal sums are Pell numbers (A000129). - Gerald McGarvey, May 17 2005
Riordan array (1/(1-2x), x/(1-2x)). - Paul Barry, Jul 28 2005
T(n,k) is the number of elements of the Coxeter group B_n with descent set contained in {s_k}, 0<=k<=n-1. For T(n,n), we interpret this as the number of elements of B_n with empty descent set (since s_n does not exist). - Elizabeth Morris (epmorris(AT)math.washington.edu), Mar 01 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then T(n,k) = the number of elements (x,y) of S for which y has exactly k more elements than x. - Ross La Haye, Oct 12 2007
T(n,k) is number of paths in the first quadrant going from (0,0) to (n,k) using only steps B=(1,0) colored blue, R=(1,0) colored red and U=(1,1). Example: T(3,2)=6 because we have BUU, RUU, UBU, URU, UUB and UUR. - Emeric Deutsch, Nov 04 2007
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), and two kinds of step (1,0). - Joerg Arndt, Jul 01 2011
T(i,j) is the number of i-permutations of {1,2,3} containing j 1's. Example: T(2,1)=4 because we have 12, 13, 21 and 31; T(3,2)=6 because we have 112, 113, 121, 131, 211 and 311. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in expansion of (2+x)^n. - N-E. Fahssi, Apr 13 2008
Sum of diagonals are Jacobsthal-numbers: A001045. - Mark Dols, Aug 31 2009
Triangle T(n,k), read by rows, given by [2,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009
Eigensequence of the triangle = A004211: (1, 3, 11, 49, 257, 1539, ...). - Gary W. Adamson, Feb 07 2010
f-vectors ("face"-vectors) for n-dimensional cubes [see e.g., Hoare]. (This is a restatement of Bottomley's above.) - Tom Copeland, Oct 19 2012
With P = Pascal matrix, the sequence of matrices I, A007318, A038207, A027465, A038231, A038243, A038255, A027466 ... = P^0, P^1, P^2, ... are related by Copeland's formula below to the evolution at integral time steps n= 0, 1, 2, ... of an exponential distribution exp(-x*z) governed by the Fokker-Planck equation as given in the Dattoli et al. ref. below. - Tom Copeland, Oct 26 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Mar 12 2013
Unsigned diagonals of A133156 are rows of this array. - Tom Copeland, Oct 11 2014
Omitting the first row, this is the production matrix for A039683, where an equivalent differential operator can be found. - Tom Copeland, Oct 11 2016
T(n,k) is the number of functions f:[n]->[3] with exactly k elements mapped to 3. Note that there are C(n,k) ways to choose the k elements mapped to 3, and there are 2^(n-k) ways to map the other (n-k) elements to {1,2}. Hence, by summing T(n,k) as k runs from 0 to n, we obtain 3^n = Sum_{k=0..n} T(n,k). - Dennis P. Walsh, Sep 26 2017
Since this array is the square of the Pascal lower triangular matrix, the row polynomials of this array are obtained as the umbral composition of the row polynomials P_n(x) of the Pascal matrix with themselves. E.g., P_3(P.(x)) = 1 P_3(x) + 3 P_2(x) + 3 P_1(x) + 1 = (x^3 + 3 x^2 + 3 x + 1) + 3 (x^2 + 2 x + 1) + 3 (x + 1) + 1 = x^3 + 6 x^2 + 12 x + 8. - Tom Copeland, Nov 12 2018
T(n,k) is the number of 2-compositions of n+1 with some zeros allowed that have k zeros; see the Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
Also the convolution triangle of A000079. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins with T(0,0):
   1;
   2,  1;
   4,  4,  1;
   8, 12,  6,  1;
  16, 32, 24,  8,  1;
  32, 80, 80, 40, 10,  1;
  ... -  corrected by _Clark Kimberling_, Aug 05 2011
Seen as an array read by descending antidiagonals:
[0] 1, 2,  4,   8,    16,    32,    64,     128,     256, ...     [A000079]
[1] 1, 4,  12,  32,   80,    192,   448,    1024,    2304, ...    [A001787]
[2] 1, 6,  24,  80,   240,   672,   1792,   4608,    11520, ...   [A001788]
[3] 1, 8,  40,  160,  560,   1792,  5376,   15360,   42240, ...   [A001789]
[4] 1, 10, 60,  280,  1120,  4032,  13440,  42240,   126720, ...  [A003472]
[5] 1, 12, 84,  448,  2016,  8064,  29568,  101376,  329472, ...  [A054849]
[6] 1, 14, 112, 672,  3360,  14784, 59136,  219648,  768768, ...  [A002409]
[7] 1, 16, 144, 960,  5280,  25344, 109824, 439296,  1647360, ... [A054851]
[8] 1, 18, 180, 1320, 7920,  41184, 192192, 823680,  3294720, ... [A140325]
[9] 1, 20, 220, 1760, 11440, 64064, 320320, 1464320, 6223360, ... [A140354]
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 155.
  • H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.

Crossrefs

Programs

  • GAP
    Flat(List([0..15], n->List([0..n], k->Binomial(n, k)*2^(n-k)))); # Stefano Spezia, Nov 21 2018
  • Haskell
    a038207 n = a038207_list !! n
    a038207_list = concat $ iterate ([2,1] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a038207' n k = a038207_tabl !! n !! k
    a038207_row n = a038207_tabl !! n
    a038207_tabl = iterate f [1] where
       f row = zipWith (+) ([0] ++ row) (map (* 2) row ++ [0])
    -- Reinhard Zumkeller, Feb 27 2013
    
  • Magma
    /* As triangle */ [[(&+[Binomial(n,i)*Binomial(i,k): i in [k..n]]): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Nov 16 2018
    
  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*2^(i-j), j = 0 .. i) end do; # yields sequence in triangular form - Emeric Deutsch, Nov 04 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 2^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[CoefficientList[Expand[(y + x + x^2)^n], y] /. x -> 1, {n, 0,10}] // TableForm (* Geoffrey Critzer, Nov 20 2011 *)
    Table[Binomial[n,k]2^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, May 22 2020 *)
  • PARI
    {T(n, k) = polcoeff((x+2)^n, k)}; /* Michael Somos, Apr 27 2000 */
    
  • Sage
    def A038207_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+2*M[n-1,k]
        return M
    A038207_triangle(9)  # Peter Luschny, Sep 20 2012
    

Formula

T(n, k) = Sum_{i=0..n} binomial(n,i)*binomial(i,k).
T(n, k) = (-1)^k*A065109(n,k).
G.f.: 1/(1-2*z-t*z). - Emeric Deutsch, Nov 04 2007
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
From the formalism of A133314, the e.g.f. for the row polynomials of A038207 is exp(x*t)*exp(2x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-2x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*2x). The results generalize for 2 replaced by any number. - Tom Copeland, Aug 18 2008
Sum_{k=0..n} T(n,k)*x^k = (2+x)^n. - Philippe Deléham, Dec 15 2009
n-th row is obtained by taking pairwise sums of triangle A112857 terms starting from the right. - Gary W. Adamson, Feb 06 2012
T(n,n) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) for kJon Perry, Oct 11 2012
The e.g.f. for the n-th row is given by umbral composition of the normalized Laguerre polynomials A021009 as p(n,x) = L(n, -L(.,-x))/n! = 2^n L(n, -x/2)/n!. E.g., L(2,x) = 2 -4*x +x^2, so p(2,x)= (1/2)*L(2, -L(.,-x)) = (1/2)*(2*L(0,-x) + 4*L(1,-x) + L(2,-x)) = (1/2)*(2 + 4*(1+x) + (2+4*x+x^2)) = 4 + 4*x + x^2/2. - Tom Copeland, Oct 20 2012
From Tom Copeland, Oct 26 2012: (Start)
From the formalism of A132440 and A218272:
Let P and P^T be the Pascal matrix and its transpose and H= P^2= A038207.
Then with D the derivative operator,
exp(x*z/(1-2*z))/(1-2*z)= exp(2*z D_z z) e^(x*z)= exp(2*D_x (x D_x)) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T
= Sum_{n>=0} z^n * 2^n Lag_n(-x/2)= exp[z*EF(.,x)], an o.g.f. for the f-vectors (rows) of A038207 where EF(n,x) is an e.g.f. for the n-th f-vector. (Lag_n(x) are the un-normalized Laguerre polynomials.)
Conversely,
exp(z*(2+x))= exp(2D_x) exp(x*z)= exp(2x) exp(x*z)
= (1 x x^2 x^3 ...) H^T (1 z z^2/2! z^3/3! ...)^T
= (1 z z^2/2! z^3/3! ...) H (1 x x^2 x^3 ...)^T
= exp(z*OF(.,x)), an e.g.f for the f-vectors of A038207 where
OF(n,x)= (2+x)^n is an o.g.f. for the n-th f-vector.
(End)
G.f.: R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ (1+y))*x/((2*k+2+ (1+y))*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
A038207 = exp[M*B(.,2)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). B(n,2) = A001861(n). - Tom Copeland, Apr 17 2014
T = (A007318)^2 = A112857*|A167374| = |A118801|*|A167374| = |A118801*A167374| = |P*A167374*P^(-1)*A167374| = |P*NpdP*A167374|. Cf. A118801. - Tom Copeland, Nov 17 2016
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial 2^n*Sum_{k = 0..n} binomial(n,k)*x^k/k!. For example, the e.g.f. for the third subdiagonal is exp(x)*(8 + 24*x + 12*x^2 + 4*x^3/3) = 8 + 32*x + 80*x^2/2! + 160*x^3/3! + .... - Peter Bala, Mar 05 2017
T(3*k+2,k) = T(3*k+2,k+1), T(2*k+1,k) = 2*T(2*k+1,k+1). - Yuchun Ji, May 26 2020
From Robert A. Russell, Aug 05 2020: (Start)
G.f. for column k: x^k / (1-2*x)^(k+1).
E.g.f. for column k: exp(2*x) * x^k / k!. (End)
Also the array A(n, k) read by descending antidiagonals, where A(n, k) = (-1)^n*Sum_{j= 0..n+k} binomial(n + k, j)*hypergeom([-n, j+1], [1], 1). - Peter Luschny, Nov 09 2021

A008459 Square the entries of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504, 44100, 14400, 2025, 100, 1
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), having k right turns. - Emeric Deutsch, Nov 23 2003
Product of A007318 and A105868. - Paul Barry, Nov 15 2005
Number of partitions that fit in an n X n box with Durfee square k. - Franklin T. Adams-Watters, Feb 20 2006
From Peter Bala, Oct 23 2008: (Start)
Narayana numbers of type B. Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p. 60]. See A063007 for the corresponding f-vectors for associahedra of type B_n. See A001263 for the h-vectors for associahedra of type A_n. The Hilbert transform of this triangular array is A108625 (see A145905 for the definition of this term).
Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i, j <= n + 1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A063007 is the corresponding array of f-vectors for these type A_n polytopes. See A086645 for the array of h-vectors for type C_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
(End)
The n-th row consists of the coefficients of the polynomial P_n(t) = Integral_{s = 0..2*Pi} (1 + t^2 - 2*t*cos(s))^n/Pi/2 ds. For example, when n = 3, we get P_3(t) = t^6 + 9*t^4 + 9*t^2 + 1; the coefficients are 1, 9, 9, 1. - Theodore Kolokolnikov, Oct 26 2010
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - Peter Bala, Jul 24 2013
From Colin Defant, Sep 16 2018: (Start)
Let s denote West's stack-sorting map. T(n,k) is the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 231, and 321. T(n,k) is also the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 312, and 321.
T(n,k) is the number of permutations of [n+1] with k descents that avoid the patterns 1342, 3142, 3412, and 3421. (End)
The number of convex polyominoes whose smallest bounding rectangle has size (k+1)*(n+1-k) and which contain the lower left corner of the bounding rectangle (directed convex polyominoes). - Günter Rote, Feb 27 2019
Let P be the poset [n] X [n] ordered by the product order. T(n,k) is the number of antichains in P containing exactly k elements. Cf. A063746. - Geoffrey Critzer, Mar 28 2020

Examples

			Pascal's triangle begins
  1
  1  1
  1  2   1
  1  3   3   1
  1  4   6   4   1
  1  5  10  10   5   1
  1  6  15  20  15   6   1
  1  7  21  35  35  21   7   1
...
so the present triangle begins
  1
  1   1
  1   4    1
  1   9    9     1
  1  16   36    16     1
  1  25  100   100    25    1
  1  36  225   400   225   36   1
  1  49  441  1225  1225  441  49   1
...
		

References

  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
  • J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650
  • P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]

Crossrefs

Row sums are in A000984. Columns 0-3 are A000012, A000290, A000537, A001249.
Family of polynomials (see A062145): this sequence (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Cf. A007318, A055133, A116647, A001263, A086645, A063007, A108558, A108625 (Hilbert transform), A145903, A181543, A086645 (logarithmic derivative), A105868 (inverse binomial transform), A093118.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n,k)^2))); # Muniru A Asiru, Mar 30 2018
    
  • Magma
    /* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016
    
  • Maple
    seq(seq(binomial(n, k)^2, k=0..n), n=0..10);
  • Mathematica
    Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)
  • Maxima
    create_list(binomial(n,k)^2,n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • Maxima
    T(n,k):=if n=k then 1 else if k=0 then 1 else T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1); /* Vladimir Kruchinin, Oct 18 2014 */
    
  • Maxima
    A(x,y):=1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2);
    taylor(x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2),x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 23 2020 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0,n,(2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)),n,x),k,y)} \\ Paul D. Hanna, Oct 31 2010
    
  • Python
    def A008459(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2))**2 # Chai Wah Wu, Nov 12 2024

Formula

T(n,k) = A007318(n,k)^2. - Sean A. Irvine, Mar 29 2018
E.g.f.: exp((1+y)*x)*BesselI(0, 2*sqrt(y)*x). - Vladeta Jovovic, Nov 17 2003
G.f.: 1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2); g.f. for row n: (1-t)^n P_n[(1+t)/(1-t)] where the P_n's are the Legendre polynomials. - Emeric Deutsch, Nov 23 2003 [The original version of the bivariate g.f. has been modified with the roles of x and y interchanged so that now x corresponds to n and y to k. - Petros Hadjicostas, Oct 22 2017]
G.f. for column k is Sum_{j = 0..k} C(k, j)^2*x^(k+j)/(1 - x)^(2*k+1). - Paul Barry, Nov 15 2005
Column k has g.f. (x^k)*Legendre_P(k, (1+x)/(1-x))/(1 - x)^(k+1) = (x^k)*Sum_{j = 0..k} C(k, j)^2*x^j/(1 - x)^(2*k+1). - Paul Barry, Nov 19 2005
Let E be the operator D*x*D, where D denotes the derivative operator d/dx. Then (1/n!^2) * E^n(1/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} binomial(n+k, k)^2*x^k. For example, when n = 3 we have (1/3!)^2*E^3(1/(1 - x)) = (1 + 9*x + 9*x^2 + x^3)/(1 - x)^7 = (1/3!)^2 * Sum_{k >= 0} ((k+1)*(k+2)*(k+3))^2*x^k. - Peter Bala, Oct 23 2008
G.f.: A(x, y) = Sum_{n >= 0} (2*n)!/n!^2 * x^(2*n)*y^n/(1 - x - x*y)^(2*n+1). - Paul D. Hanna, Oct 31 2010
From Peter Bala, Jul 24 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Generating function: E(y)*E(x*y) = 1 + (1 + x)*y + (1 + 4*x + x^2)*y^2/2!^2 + (1 + 9*x + 9*x^2 + x^3)*y^3/3!^2 + .... Cf. the unsigned version of A021009 with generating function exp(y)*E(x*y).
The n-th power of this array has the generating function E(y)^n*E(x*y). In particular, the matrix inverse A055133 has the generating function E(x*y)/E(y). (End)
T(n,k) = T(n-1,k)*(n+k)/(n-k) + T(n-1,k-1), T(n,0) = T(n,n) = 1. - Vladimir Kruchinin, Oct 18 2014
Observe that the recurrence T(n,k) = T(n-1,k)*(n+k)/(n-k) - T(n-1,k-1), for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1 gives Pascal's triangle A007318. - Peter Bala, Dec 21 2014
n-th row polynomial R(n, x) = [z^n] (1 + (1 + x)*z + x*z^2)^n. Note that 1/n*[z^(n-1)] (1 + (1 + x)*z + x*z^2)^n gives the row polynomials of A001263. - Peter Bala, Jun 24 2015
Binomial transform of A105868. If G(x,t) = 1/sqrt(1 - 2*(1 + t)*x + (1 - t)^2*x^2) denotes the o.g.f. of this array then 1 + x*d/dx log(G(x,t)) = 1 + (1 + t)*x + (1 + 6*t + t^2)*x^2 + ... is the o.g.f. for A086645. - Peter Bala, Sep 06 2015
T(n,k) = Sum_{i=0..n} C(n-i,k)*C(n,i)*C(n+i,i)*(-1)^(n-i-k). - Vladimir Kruchinin, Jan 14 2018
G.f. satisfies A(x,y) = x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2). - Vladimir Kruchinin, Oct 23 2020
G.f. satisfies the differential equation y * d^2(A(x,y))/dy^2 - x^2 * d^2(x*A(x,y))/dx^2 + 2*x^2* A(x,y)^3 = 0. - Sergii Voloshyn, Mar 07 2025
T(n,k) = Sum_{i=0..n} C(2*n+1,i)*C(n+k-i,n)^2*(-1)^i. - Natalia L. Skirrow, Apr 14 2025

A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 3628800
Offset: 0

Views

Author

Paul Barry, May 13 2004

Keywords

Comments

Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - N. J. A. Sloane, Mar 31 2016
Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - Paul Barry, Mar 27 2007
From Tom Copeland, Nov 01 2007: (Start)
T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
4) B(x) = (1-xDx)^(-1) A(x), formally
5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
From Peter Bala, Jul 10 2008: (Start)
This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0.....................1...............2.......3......4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
(n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - Gary W. Adamson, May 03 2009
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - Johannes W. Meijer, Oct 07 2009
T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - Dennis P. Walsh, Jan 24 2011
T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - Geoffrey Critzer, Dec 11 2011
T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - Tom Copeland, Dec 03 2013
For interpretations in terms of colored necklaces, see A213936 and A173333. - Tom Copeland, Aug 18 2016
See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016
Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - Andrey Zabolotskiy, Dec 16 2016
The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - Peter Bala, Feb 13 2017
Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] = 1/(I - A132440), where I is the identity matrix. - Tom Copeland, Jul 03 2017
If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - Michael Somos, Sep 19 2021

Examples

			Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ...
For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011
Triangle begins:
     1,
     1,    1,
     2,    2,    1,
     6,    6,    3,    1,
    24,   24,   12,    4,    1,
   120,  120,   60,   20,    5,    1,
   720,  720,  360,  120,   30,    6,    1,
  5040, 5040, 2520,  840,  210,   42,    7,    1
The production matrix is:
      1,     1,
      1,     1,     1,
      2,     2,     1,    1,
      6,     6,     3,    1,    1,
     24,    24,    12,    4,    1,   1,
    120,   120,    60,   20,    5,   1,   1,
    720,   720,   360,  120,   30,   6,   1,   1,
   5040,  5040,  2520,  840,  210,  42,   7,   1,   1,
  40320, 40320, 20160, 6720, 1680, 336,  56,   8,   1,   1
which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's.
Inverse begins:
   1,
  -1,  1,
   0, -2,  1,
   0,  0, -3,  1,
   0,  0,  0, -4,  1,
   0,  0,  0,  0, -5,  1,
   0,  0,  0,  0,  0, -6,  1,
   0,  0,  0,  0,  0,  0, -7,  1
		

Crossrefs

Programs

  • Haskell
    a094587 n k = a094587_tabl !! n !! k
    a094587_row n = a094587_tabl !! n
    a094587_tabl = map fst $ iterate f ([1], 1)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9);  # Johannes W. Meijer, Oct 07 2009, revised Nov 25 2012
    # Alternative: Note that if you leave out 'abs' you get A021009.
    T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: #  Peter Luschny, Dec 30 2021
  • Mathematica
    Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* Geoffrey Critzer, Dec 11 2011 *)
  • Sage
    def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list()
    for n in (0..7): print(A094587_row(n)) # Peter Luschny, Sep 28 2017

Formula

T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - Peter Bala, Jul 10 2008
A094587 = 1 / ((-1)*A129184 * A127648 + I), I = Identity matrix. - Gary W. Adamson, May 03 2009
From Johannes W. Meijer, Oct 07 2009: (Start)
The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - Peter Bala, Oct 28 2011
A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - Tom Copeland, Oct 25 2012
From Peter Bala, Aug 28 2013: (Start)
The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
From Tom Copeland, Apr 21 & 26, and Aug 13 2014: (Start)
T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
From Tom Copeland, Nov 18 2015: (Start)
Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
(End)
The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - Tom Copeland, Aug 17 2016
The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - Tom Copeland, Nov 10 2016
From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - Tom Copeland, Nov 22 2016
From Peter Bala, Feb 18 2017: (Start)
G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) = x^n + n*R(n-1, x), for n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from Peter Bala, Aug 28 2013). - Wolfdieter Lang, Dec 23 2019
T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - Werner Schulte, Jul 26 2022

Extensions

Edited by Johannes W. Meijer, Oct 07 2009
New description from Dennis P. Walsh, Jan 24 2011

A001040 a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785, 7489051, 83120346, 1004933203, 13147251985, 185066460993, 2789144166880, 44811373131073, 764582487395121, 13807296146243251, 263103209266016890, 5275871481466581051, 111056404320064218961, 2448516766522879398193
Offset: 0

Views

Author

Keywords

Comments

If the initial 0 and 1 are omitted, CONTINUANT transform of 1, 2, 3, 4, 5, ...
a(n+1) is the numerator of the continued fraction given by C(n) = [n, n-1,...,3,2,1], e.g., [1] = 1, [2,1]=3, [3,2,1] = 10/3, [4,3,2,1] = 43/10 etc. Cf. A001053. - Amarnath Murthy, May 02 2001
Along those lines, a(n) is the denominator of the continued fraction [n,n-1,...3,2,1] and is the numerator of the continued fraction [1,2,3,...,n-1]. - Greg Dresden, Feb 20 2020
Starting (1, 3, 10, 43, ...) = eigensequence of triangle A127701. - Gary W. Adamson, Dec 29 2008
For n >=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 1's along the superdiagonal and the subdiagonal, and consecutive integers from 1 to n along the main diagonal (see Mathematica program below). - John M. Campbell, Jul 08 2011
Generally, solution of the recurrence a(n+1) = n*a(n) + a(n-1) is a(n) = BesselI(n,-2)*(2*a(0)*BesselK(1,2)-2*a(1)*BesselK(0,2)) + (2*a(0)*BesselI(1,2)+2*a(1)*BesselI(0,2))*BesselK(n,2), and asymptotic is a(n) ~ (a(0)*BesselI(1,2)+a(1)*BesselI(0,2)) * (n-1)!. - Vaclav Kotesovec, Jan 05 2013
For n > 0: a(n) = A058294(n,n) = A102473(n,n) = A102472(n,1). - Reinhard Zumkeller, Sep 14 2014
Conjecture: 2*n!*a(n) is the number of open tours by a rook on an (n X 2) chessboard which ends at the opposite line of length n. - Mikhail Kurkov, Nov 19 2019

Examples

			G.f. = x + x^2 + 3*x^3 + 10*x^4 + 43*x^5 + 225*x^6 + 1393*x^7 + 9976*x^8 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A058294. Cf. A001053.
Cf. A127701. - Gary W. Adamson, Dec 29 2008
Similar recurrences: A001053, A058279, A058307. - Wolfdieter Lang, May 19 2010

Programs

  • Haskell
    a001040 n = a001040_list !! n
    a001040_list = 0 : 1 : zipWith (+)
       a001040_list (zipWith (*) [1..] $ tail a001040_list)
    -- Reinhard Zumkeller, Mar 05 2013
    
  • Magma
    a:=[1,1]; [0] cat [n le 2 select a[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..23]]; // Marius A. Burtea, Nov 19 2019
  • Maple
    A001040 := proc(n)
        if n <= 1 then
            n;
        else
            (n-1)*procname(n-1)+procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 13 2015
  • Mathematica
    Table[Permanent[Array[KroneckerDelta[#1, #2]*(#1) + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n - 1, n - 1}]], {n, 2, 30}] (* John M. Campbell, Jul 08 2011 *)
    Join[{0},RecurrenceTable[{a[0]==1,a[1]==1,a[n]==n a[n-1]+a[n-2]}, a[n], {n,30}]] (* Harvey P. Dale, Aug 14 2011 *)
    FullSimplify[Table[2(-BesselI[n,-2]BesselK[0,2]+BesselI[0,2]BesselK[n,2]),{n,0,20}]] (* Vaclav Kotesovec, Jan 05 2013 *)
  • PARI
    {a(n) = contfracpnqn( vector(abs(n), i, i))[1, 2]}; /* Michael Somos, Sep 25 2005 */
    
  • Sage
    def A001040(n):
        if n < 2: return n
        return factorial(n-1)*hypergeometric([1-n/2,-n/2+1/2], [1,1-n,1-n], 4)
    [round(A001040(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 10 2014
    

Formula

Generalized Fibonacci sequence for (unsigned) Laguerre triangle A021009. a(n+1) = sum{k=0..floor(n/2), C(n-k, k)(n-k)!/k!}. - Paul Barry, May 10 2004
a(-n) = a(n) for all n in Z. - Michael Somos, Sep 25 2005
E.g.f.: -I*Pi*(BesselY(1, 2*I)*BesselI(0, 2*sqrt(1-x)) - I*BesselI(1, 2)*BesselY(0, 2*I*sqrt(1-x))). Such e.g.f. computations were the result of an e-mail exchange with Gary Detlefs. After differentiation and putting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p. 360, 9.1.16 and p. 375, 9.63. - Wolfdieter Lang, May 19 2010
Limit_{n->infinity} a(n)/(n-1)! = BesselI(0,2) = 2.279585302336... (see A070910). - Vaclav Kotesovec, Jan 05 2013
a(n) = 2*(BesselI(0,2)*BesselK(n,2) - BesselI(n,-2)*BesselK(0,2)). - Vaclav Kotesovec, Jan 05 2013
a(n) = (n-1)!*hypergeometric([1-n/2,1/2-n/2],[1,1-n,1-n], 4) for n >= 2. - Peter Luschny, Sep 10 2014
0 = a(n)*(-a(n+2)) + a(n+1)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Sep 13 2014
Observed: a(n) = A070910*(n-1)!*(1 + 1/(n-1) + 1/(2*(n-1)^2) + O((n-1)^-3)). - A.H.M. Smeets, Aug 19 2018
a(n) mod 2 = A166486(n). - Alois P. Heinz, Jul 03 2023

Extensions

Definition clarified by A.H.M. Smeets, Aug 19 2018
Showing 1-10 of 57 results. Next