cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A021009 Triangle of coefficients of Laguerre polynomials n!*L_n(x) (rising powers of x).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 6, -18, 9, -1, 24, -96, 72, -16, 1, 120, -600, 600, -200, 25, -1, 720, -4320, 5400, -2400, 450, -36, 1, 5040, -35280, 52920, -29400, 7350, -882, 49, -1, 40320, -322560, 564480, -376320, 117600, -18816, 1568, -64, 1, 362880, -3265920
Offset: 0

Views

Author

Keywords

Comments

In absolute values, this sequence also gives the lower triangular readout of the exponential of a matrix whose entry {j+1,j} equals (j-1)^2 (and all other entries are zero). - Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006
A partial permutation on a set X is a bijection between two subsets of X. |T(n,n-k)| equals the numbers of partial permutations of an n-set having domain cardinality equal to k. Let E denote the operator D*x*D, where D is the derivative operator d/dx. Then E^n = Sum_{k = 0..n} |T(n,k)|*x^k*D^(n+k). - Peter Bala, Oct 28 2008
The unsigned triangle is the generalized Riordan array (exp(x), x) with respect to the sequence n!^2 as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!*(n+1)! is A105278). - Peter Bala, Aug 15 2013
The unsigned triangle appears on page 83 of Ser (1933). - N. J. A. Sloane, Jan 16 2020

Examples

			The triangle a(n,m) starts:
n\m   0       1      2       3      4      5    6  7  8
0:    1
1:    1      -1
2:    2      -4      1
3:    6     -18      9      -1
4:   24     -96     72     -16      1
5:  120    -600    600    -200     25     -1
6:  720   -4320   5400   -2400    450    -36    1
7: 5040  -35280  52920  -29400   7350   -882   49  -1
8:40320 -322560 564480 -376320 117600 -18816 1568 -64 1
...
From _Wolfdieter Lang_, Jan 31 2013 (Start)
Recurrence (usual one): a(4,1) = 7*(-18) - 6 - 3^2*(-4) = -96.
Recurrence (simplified version): a(4,1) = 5*(-18) - 6 = -96.
Recurrence (Sage program): |a(4,1)| = 6 + 3*18 + 4*9 = 96. (End)
Embedded recurrence (Maple program): a(4,1) = -4!*(1 + 3) = -96.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.

Crossrefs

Row sums give A009940, alternating row sums are A002720.
Column sequences (unsigned): A000142, A001563, A001809-A001812 for m=0..5.
Central terms: A295383.
For generators and generalizations see A132440.

Programs

  • Magma
    /* As triangle: */ [[((-1)^k)*Factorial(n)*Binomial(n, k)/Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 18 2020
  • Maple
    A021009 := proc(n,k) local S; S := proc(n,k) option remember; `if`(k = 0, 1, `if`( k > n, 0, S(n-1,k-1)/k + S(n-1,k))) end: (-1)^k*n!*S(n,k) end: seq(seq(A021009(n,k), k=0..n), n=0..8); # Peter Luschny, Jun 21 2017
    # Alternative for the unsigned case (function RiordanSquare defined in A321620):
    RiordanSquare(add(x^m, m=0..10), 10, true); # Peter Luschny, Dec 06 2018
  • Mathematica
    Flatten[ Table[ CoefficientList[ n!*LaguerreL[n, x], x], {n, 0, 9}]] (* Jean-François Alcover, Dec 13 2011 *)
  • PARI
    p(n) = denominator(bestapprPade(Ser(vector(2*n, k, (k-1)!))));
    concat(1, concat(vector(9, n, Vec(-p(n)))))  \\ Gheorghe Coserea, Dec 01 2016
    
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( sum(i=0, n, binomial(n, n-i) * (-x)^i / i!), k))}; /* Michael Somos, Dec 01 2016 */
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
    
  • Sage
    def A021009_triangle(dim): # computes unsigned T(n,k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2*k+1)*M[n-1,k]+(k+1)^2*M[n-1,k+1]
        return M
    A021009_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = ((-1)^m)*n!*binomial(n, m)/m! = ((-1)^m)*((n!/m!)^2)/(n-m)! if n >= m, otherwise 0.
E.g.f. for m-th column: (-x/(1-x))^m /((1-x)*m!), m >= 0.
Representation (of unsigned a(n, m)) as special values of Gauss hypergeometric function 2F1, in Maple notation: n!*(-1)^m*hypergeom([ -m, n+1 ], [ 1 ], 1)/m!. - Karol A. Penson, Oct 02 2003
Sum_{m>=0} (-1)^m*a(n, m) = A002720(n). - Philippe Deléham, Mar 10 2004
E.g.f.: (1/(1-x))*exp(x*y/(x-1)). - Vladeta Jovovic, Apr 07 2005
Sum_{n>=0, m>=0} a(n, m)*(x^n/n!^2)*y^m = exp(x)*BesselJ(0, 2*sqrt(x*y)). - Vladeta Jovovic, Apr 07 2005
Matrix square yields the identity matrix: L^2 = I. - Paul D. Hanna, Nov 22 2008
From Tom Copeland, Oct 20 2012: (Start)
Symbolically, with D=d/dx and LN(n,x)=n!L_n(x), define :Dx:^j = D^j x^j, :xD:^j = x^j D^j, and LN(.,x)^j = LN(j,x) = row polynomials of A021009.
Then some useful relations are
1) (:Dx:)^n = LN(n,-:xD:) [Rodriguez formula]
2) (xDx)^n = x^n D^n x^n = x^n LN(n,-:xD:) [See Al-Salam ref./A132440]
3) (DxD)^n = D^n x^n D^n = LN(n,-:xD:) D^n [See ref. in A132440]
4) umbral composition LN(n,LN(.,x))= x^n [See Rota ref.]
5) umbral comp. LN(n,-:Dx:) = LN(n,-LN(.,-:xD:)) = 2^n LN(n,-:xD:/2)= n! * (n-th row e.g.f.(x) of A038207 with x replaced by :xD:).
An example for 2) is the operator (xDx)^2 = (xDx)(xDx) = xD(x^2 + x^3D)= 2x^2 + 4x^3 D + x^4 D^2 = x^2 (2 + 4x D + x^2 D^2) = x^2 (2 + 4 :xD: + :xD:^2) = x^2 LN(2,-:xD:) = x^2 2! L_2(-:xD:).
An example of the umbral composition in 5) is given in A038207.
The op. xDx is related to the Euler/binomial transformation for power series/o.g.f.s. through exp(t*xDx) f(x) = f[x/(1-t*x)]/(1-t*x) and to the special Moebius/linear fractional/projective transformation z exp(-t*zDz)(1/z)f(z) = f(z/(1+t*z)).
For a general discussion of umbral calculus see the Gessel link. (End)
From Wolfdieter Lang, Jan 31 2013: (Start)
Standard recurrence derived from the three term recurrence of the orthogonal polynomials system {n!*L(n,x)}: L(n,x) = (2*n - 1 - x)*L(n-1,x) - (n-1)^2*L(n-2,x), n>=1, L(-1,x) = 0, L(0,x) = 1.
a(n,m) = (2*n-1)*a(n-1,m) - a(n-1,m-1) - (n-1)^2*a(n-2,m),
n >=1, with a(n,-1) = 0, a(0,0) = 1, a(n,m) = 0 if n < m. (compare this with Peter Luschny's program for the unsigned case |a(n,m)| = (-1)^m*a(n,m)).
Simplified recurrence (using column recurrence from explicit form for a(n,m) given above):
a(n,m) = (n+m)*a(n-1,m) - a(n-1,m-1), n >= 1, a(0,0) = 1, a(n,-1) = 0, a(n,m) = 0 if n < m. (End)
|T(n,k)| = [x^k] (-1)^n*U(-n,1,-x), where U(a,b,x) is Kummer's hypergeometric U function. - Peter Luschny, Apr 11 2015
T(n,k) = (-1)^k*n!*S(n,k) where S(n,k) is recursively defined by: "if k = 0 then 1 else if k > n then 0 else S(n-1,k-1)/k + S(n-1,k)". - Peter Luschny, Jun 21 2017
The unsigned case is the exponential Riordan square (see A321620) of the factorial numbers. - Peter Luschny, Dec 06 2018
Omitting the diagonal and signs, this array is generated by the commutator [D^n,x^n] = D^n x^n - x^n D^n = Sum_{i=0..n-1} ((n!/i!)^2/(n-i)!) x^i D^i on p. 9 of both papers by Belov-Kanel and Kontsevich. - Tom Copeland, Jan 23 2020

Extensions

Name changed and table given by Wolfdieter Lang, Nov 28 2011

A102773 a(n) = Sum_{i=0..n} binomial(n,i)^2*i!*4^i.

Original entry on oeis.org

1, 5, 49, 709, 13505, 318181, 8916145, 289283429, 10656031489, 439039941445, 19995858681521, 997184081617285, 54026137182982849, 3159127731435043109, 198258247783634075185, 13289190424904891606821, 947419111092028780186625
Offset: 0

Views

Author

Miklos Kristof, Mar 16 2005

Keywords

Crossrefs

Programs

  • Maple
    seq(sum('binomial(k,i)^2*i!*4^i', 'i'=0..k),k=0..30);
  • Mathematica
    f[n_] := Sum[k!*4^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 16}] (* or *)
    Range[0, 16]! CoefficientList[ Series[1/(1 - 4x)*Exp[x/(1 - 4x)], {x, 0, 16}], x] (* Robert G. Wilson v, Mar 16 2005 *)
  • PARI
    a(n)=my(t=1); sum(i=1,n, t*=i; binomial(n,i)^2*t<<(2*i), 1) \\ Charles R Greathouse IV, Oct 23 2023

Formula

E.g.f.: (1/(1-4x))*exp(x/(1-4x)).
a(n) = (8*n-3)*a(n-1) - 16*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 09 2013
a(n) ~ n^(n+1/4) * exp(sqrt(n)-n-1/8) * 4^n * (1 + 37/(96*sqrt(n))). - Vaclav Kotesovec, Oct 09 2013
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(4*x) * BesselI(0,2*sqrt(x)). - Ilya Gutkovskiy, Jul 17 2020

Extensions

More terms from Robert G. Wilson v, Mar 16 2005

A286724 Triangle read by rows. A generalization of unsigned Lah numbers, called L[2,1].

Original entry on oeis.org

1, 2, 1, 8, 8, 1, 48, 72, 18, 1, 384, 768, 288, 32, 1, 3840, 9600, 4800, 800, 50, 1, 46080, 138240, 86400, 19200, 1800, 72, 1, 645120, 2257920, 1693440, 470400, 58800, 3528, 98, 1, 10321920, 41287680, 36126720, 12042240, 1881600, 150528, 6272, 128, 1, 185794560, 836075520, 836075520, 325140480, 60963840, 6096384, 338688, 10368, 162, 1, 3715891200, 18579456000, 20901888000, 9289728000, 2032128000, 243855360, 16934400, 691200, 16200, 200, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 16 2017

Keywords

Comments

These generalized unsigned Lah numbers are the instance L[2,1] of the Sheffer triangles called L[d,a], with integers d >= 1 and integers 0 <= a < d with gcd(d,a) = 1. The standard unsigned Lah numbers are L[1,0] = A271703.
The Sheffer structure of L[d,a] is ((1 - d*t)^(-2*a/d), t/(1 - d*t)). This follows from the defining property
risefac[d,a](x, n) = Sum_{m=0..n} L[d,a](n, m)*fallfac[d,a](x, m), where risefac[d,a](x, n):= Product_{0..n-1} (x + (a+d*j)) for n >= 1 and risefac[d,a](x, 0) := 1, and fallfac[d,a](x, n):= Product_{0..n-1} (x - (a+d*j)) = for n >= 1 and fallfac[d,a](x, 0) := 1. Such rising and falling factorials arise in the generalization of Stirling numbers of both kinds S2[d,a] and S1[d,a]. See the Peter Bala link under A143395 for these falling factorials called there [t;a,b,c]_n with t=x, a=d, b=0, c=a.
In matrix notation: L[d,a] = S1phat[d,a].S2hat[d,a] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations with Sheffer structures S1phat[d,a] = ((1 - d*t)^(-a/d), -(1/d)*(log(1 - d*t))) and S2hat[d,a] = (exp(a*t), (1/d)*(exp(d*t) - 1). See, e.g., S1phat[2,1] = A028338 and S2hat[2,1] = A039755.
The a- and z-sequences for these Sheffer matrices have e.g.f.s 1 + d*t and ((1 + d*t)/t)*(1 - (1 + d*t)^(-2*a/d)), respectively. See a W. Lang link under A006232 for these types of sequences.
E.g.f. of row polynomials R[d,a](n, x) := Sum_{m=0..n} L[d,a](n, m)*x^m
(1 - d*x)^(-2*a/d)*exp(t*x/(1 - d*x)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - d*t)^(-2*a/d)*(t/(1 - d*t))^m/m, m >= 0.
Meixner type identity for (monic) row polynomials: (D_x/(1 + d*D_x)) * R[d,a](n, x) = n*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1. The series in the differentiations D_x = d/dx terminates.
General Sheffer recurrence for row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R[d,a](n, x) = [(2*a+x)*1 + 2*d*(a + x)*D_x + d^2*x*(D_x)^2]*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1.
The inverse matrix L^(-1)[d,a] is Sheffer (g[d,a](-t), -f[d,a](-t)) with L[d,a] Sheffer (g[d,a](t), f[d,a](t)) from above. This means (see the column e.g.f. of Sheffer matrices) that L^(-1)[d,a](n, m) = (-1)^(n-m)*L[d,a](n, m). Therefore, the recurrence relations can easily be rewritten for L^(-1)[d,a] by replacing a -> -a and d -> -d.
fallfac[d,a](x, n) = Sum_{m=0..n} L^(-1)[d,a](n, m)*risefac[d,a](x, m), n >= 0.
From Wolfdieter Lang, Aug 12 2017: (Start)
The Sheffer row polynomials R[d,a](n, x) belong to the Boas-Buck class and satisfy therefore the Boas-Buck identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function) (E_x - n*1)*R[d,a](n, x) = - n*(2*a*1 + d*E_x) * Sum_{k=0..n-1} d^k*R(d,a;n-1-k,x)/(n-1-k)!, with E_x = x*d/dx (Euler operator).
This implies a recurrence for the sequence of column m: L[d,a](n, m) = (n!*(2*a + d*m)/(n-m))*Sum_{p=0..n-1-m} d^p*L[d,a](n-1-p, m)/(n-1-p)!, for n > m>=0, and input L[d,a](m, m) = 1. For the present [d,a] = [2,1] instance see the formula and example sections. (End)
From Wolfdieter Lang, Sep 14 2017: (Start)
The diagonal sequences are 2^D*D!*(binomial(m+D, m))^2, m >= 0, for D >= 0 (main diagonal D = 0). From the o.g.f.s obtained via Lagrange's theorem. See the second W. Lang link below for the general Sheffer case.
The o.g.f. of the diagonal D sequence is 2^D*D!*Sum_{m=0..D} A008459(D, m)*x^m /(1- x)^(2*D + 1), D >= 0. (End)
It appears that this is also the matrix square of unsigned triangle of coefficients of Laguerre polynomials n!*L_n(x), abs(A021009(n, k)). - Ali Pourzand, Mar 10 2025 [This observation is correct. - Peter Luschny, Mar 10 2025]

Examples

			The triangle T(n, m) begins:
  n\m        0         1         2         3        4       5      6     7   8 9
  0:         1
  1:         2         1
  2:         8         8         1
  3:        48        72        18         1
  4:       384       768       288        32        1
  5:      3840      9600      4800       800       50       1
  6:     46080    138240     86400     19200     1800      72      1
  7:    645120   2257920   1693440    470400    58800    3528     98     1
  8:  10321920  41287680  36126720  12042240  1881600  150528   6272   128   1
  9: 185794560 836075520 836075520 325140480 60963840 6096384 338688 10368 162 1
  ...
From _Wolfdieter Lang_, Aug 12 2017: (Start)
Recurrence for column elements with m >= 1, and input column m = 0: T(3, 2) = (3/2)*T(2, 1) + 2*3*T(2, 2) = (3/2)*8 + 6 = 18.
Four term recurrence: T(3, 2) = T(2, 1) + 2*5*T(2, 2) - 4*2^2*T(1, 2) = 8 + 10 + 0 = 18.
Meixner type identity, n=2: 2*R(1, x) = (D_x - 2*(D_x)^2)*R(2, x), 2*(2 + x) = (8 + 2*x) - 2*2.
Sheffer recurrence: R(2, x) = (2 + x)*(2 + x) + 4*(1 + x)*1 + 0 = 8 + 8*x + x^2.
Boas-Buck recurrence for column m = 2 and n = 4: T(4, 2) = (2*4!*3/2)*(1*T(3, 2)/3! + 2*T(2, 2)/2!) = 4!*3*(18/3! + 1) = 288. (End)
Diagonal sequence D = 1: o.g.f. 2*1!*(1 + 1*x)/(1- x)^3 generating
{2*(binomial(m+1, m))^2}_{m >= 0} = {2, 8, 18, 32, ...}. - _Wolfdieter Lang_, Sep 14 2017
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Column sequences (no leading zeros): A000165, A014479, A286725.
Diagonal sequences: A000012, 2*A000290(m+1), 8*A000537(n+1), 48*A001249, 384*A288876. - Wolfdieter Lang, Sep 14 2017
Row sums are A025167. - Michael Somos, Sep 27 2017

Programs

  • Maple
    T := (n, k) -> ifelse(n < k, 0, ifelse(k = 0, n!*2^n, (n/k)*T(n-1, k-1) + 2*n*T(n-1, k))): seq(seq(T(n, k), k = 0..n), n = 0..10);  # Peter Luschny, Mar 10 2025
  • Mathematica
    T[ n_, k_] := Coefficient[ Integrate[ Exp[-x^2 - y x] HermiteH[n, x]^2, {x, -Infinity, Infinity}] / (Sqrt[Pi] Exp[y^2 / 4]), y, 2 k]; (* Michael Somos, Sep 27 2017 *)
  • SageMath
    # Using the function A021009_triangle, displays as a matrix. Following the observation of Ali Pourzand.
    print(A021009_triangle(9)^2)  # Peter Luschny, Mar 10 2025

Formula

T(n, m) = L[2,1](n, m) = Sum_{k=m..n} A028338(n, k)*A039755(k, m).
Three term recurrence for column elements with m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 2*n*T(n-1, m) with T(n, m) = 0 for n < m and the column m = 0 is T(n, 0) = (2*n)!! = n*2^n = A000165(n). (From the a- and z-sequences {1, 2, repeat(0)} and {2, repeat(0)}, respectively.)
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(2*n-1)*T(n-1, m) - 4*(n-1)^2*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
E.g.f. of row polynomials R(n, x) = R[2,1](n, x) (i.e., e.g.f. of the triangle): (1/(1-2*t))*exp(x*t/(1-2*t)).
E.g.f. of column m sequences: (t^m/(1-2*t)^(m+1))/m!, m >= 0.
Meixner type identity: Sum_{k=0..n-1} (-1)^k*2^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx.
Sheffer recurrence: R(n, x) = [(2 + x)*1 + 4*(1 + x)*D_x + 4*x*(D_x)^2]*R(n-1, x), n >= 1, and R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment above): T(n, m) = (2*n!*(1 + m)/(n-1))*Sum_{p=0..n-1-m} 2^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, and input T(m, m) = 1. - Wolfdieter Lang, Aug 12 2017
Explicit form (from the diagonal sequences with the o.g.f.s given as a comment above): T(n, m) = 2^(n-m)*(n-m)!*(binomial(n, n-m))^2 for n >= m >= 0. - Wolfdieter Lang, Sep 23 2017
Let R(n,x) denote the n-th row polynomial. Then x^n*R(n,x) = x^n o x^n, where o denotes the deformed Hadamard product of power series defined in Bala, Section 3.1. - Peter Bala, Jan 18 2018

A289147 Number of (n+1) X (n+1) binary matrices M with at most one 1 in each of the first n rows and each of the first n columns and M[n+1,n+1] = 0.

Original entry on oeis.org

1, 5, 34, 286, 2840, 32344, 414160, 5876336, 91356544, 1542401920, 28075364096, 547643910400, 11389266525184, 251428006132736, 5869482147358720, 144413021660821504, 3733822274973040640, 101181690628832198656, 2867011297057247002624, 84764595415605494743040
Offset: 0

Views

Author

Alois P. Heinz, Jun 26 2017

Keywords

Comments

Number of marriage patterns between a labeled set X of n women and a labeled set Y of n men (all heterosexual): some couples can be formed where one partner is from X and the other from Y, some members of X and Y marry external (unlabeled) partners, and some do not marry.

Examples

			a(1) = 5:
[0 0]  [1 0]  [0 1]  [0 0]  [0 1]
[0 0]  [0 0]  [0 0]  [1 0]  [1 0] .
.
a(2) = 34:
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 0 1]
[0 0 0]  [0 1 0]  [1 0 0]  [1 1 0]  [0 0 0]  [0 1 0]  [1 0 0]
.
[0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]
[0 0 1]  [0 1 0]  [0 1 0]  [1 0 0]  [1 0 0]  [0 0 0]  [0 0 0]
[1 1 0]  [0 0 0]  [1 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [0 1 0]
.
[0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
[0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 1 0]
[1 0 0]  [1 1 0]  [0 0 0]  [0 1 0]  [1 0 0]  [1 1 0]  [0 0 0]
.
[0 0 1]  [0 0 1]  [0 0 1]  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 0]
[0 1 0]  [1 0 0]  [1 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]
[1 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [1 0 0]  [0 0 0]  [1 0 0]
.
[0 1 0]  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 0]
[1 0 0]  [0 0 0]  [0 0 0]  [0 0 1]  [0 0 1]  [0 1 0]
[0 0 0]  [0 0 0]  [0 1 0]  [0 0 0]  [0 1 0]  [0 0 0]  .
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          (2*n+3)*a(n-1)-(n-1)^2*a(n-2))
        end:
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> n-> n! * add(binomial(n, i)*4^i/i!, i=0..n):
    seq(a(n), n=0..25);
    # third Maple program:
    a:= n-> n!* simplify(LaguerreL(n, -4), 'LaguerreL'):
    seq(a(n), n=0..25);
  • Mathematica
    Table[n! LaguerreL[n, -4], {n, 0, 30}] (* Indranil Ghosh, Jul 06 2017 *)
  • Python
    from mpmath import *
    mp.dps=150
    l=chop(taylor(lambda x:exp(4*x/(1-x))/(1-x), 0, 31))
    print([int(fac(i)*l[i]) for i in range(len(l))]) # Indranil Ghosh, Jul 06 2017
    # or #
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -4))
    print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 06 2017

Formula

E.g.f.: exp(4*x/(1-x))/(1-x).
a(n) = Sum_{i=0..n} i! * (2^(n-i)*binomial(n,i))^2.
a(n) = Sum_{i=0..n} (n-i)! * 4^i * binomial(n,i)^2.
a(n) = n! * Sum_{i=0..n} 4^i/i! * binomial(n,i).
a(n) = (2*n+3)*a(n-1)-(n-1)^2*a(n-2) for n>=2, a(n) = 4*n+1 for n<2.
a(n) = n! * Laguerre(n,-4) = n! * A160611(n)/A160612(n).
a(n) ~ exp(-2 + 4*sqrt(n) - n) * n^(n + 1/4) / 2 * (1 + 163/(96*sqrt(n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 4^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A341014 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * j! * binomial(n,j)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 17, 34, 1, 1, 5, 31, 139, 209, 1, 1, 6, 49, 352, 1473, 1546, 1, 1, 7, 71, 709, 5233, 19091, 13327, 1, 1, 8, 97, 1246, 13505, 95836, 291793, 130922, 1, 1, 9, 127, 1999, 28881, 318181, 2080999, 5129307, 1441729, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2021

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     3,     4,      5,      6, ...
  1,    7,    17,    31,     49,     71, ...
  1,   34,   139,   352,    709,   1246, ...
  1,  209,  1473,  5233,  13505,  28881, ...
  1, 1546, 19091, 95836, 318181, 830126, ...
		

Crossrefs

Columns 0..4 give A000012, A002720, A025167, A102757, A102773.
Rows 0..2 give A000012, A000027(n+1), A056220(n+1).
Main diagonal gives A330260.
Cf. A307883.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j]*j!*Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 02 2021 *)
  • PARI
    {T(n,k) = sum(j=0, n, k^j*j!*binomial(n, j)^2)}

Formula

E.g.f. of column k: exp(x/(1-k*x)) / (1-k*x).
T(n,k) = (2*k*n-k+1) * T(n-1,k) - k^2 * (n-1)^2 * T(n-2,k) for n > 1.

A025166 E.g.f.: -exp(-x/(1-2*x))/(1-2*x).

Original entry on oeis.org

-1, -1, -1, 7, 127, 1711, 23231, 334391, 5144063, 84149983, 1446872959, 25661798119, 454494403199, 7489030040207, 89680375568447, -759618144120809, -127049044802971649, -7480338932613448769, -369274690558092738817, -17262533154073740329017
Offset: 0

Views

Author

Keywords

Comments

Polynomials in A021009 evaluated at 2.

Crossrefs

Programs

  • Maple
    a := n -> -(-2)^n*KummerU(-n, 1, 1/2):
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Feb 12 2020
  • Mathematica
    Table[ -n! 2^n LaguerreL[ n, 1/2 ], {n, 0, 12} ]

Formula

Conjecture: a(n) + (-4*n+3)*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Feb 05 2013
a(n) = -(-2)^n*KummerU(-n, 1, 1/2). - Peter Luschny, Feb 12 2020
Sum_{n>=0} a(n) * x^n / (n!)^2 = -exp(2*x) * BesselJ(0,2*sqrt(x)). - Ilya Gutkovskiy, Jul 17 2020

Extensions

Corrected and extended by Vladeta Jovovic, Jan 29 2003

A330260 a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
    

Formula

a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselI(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A102757 a(n) = Sum_{i=0..n} C(n,i)^2 * i! * 3^i.

Original entry on oeis.org

1, 4, 31, 352, 5233, 95836, 2080999, 52189096, 1482977857, 47053929268, 1648037039791, 63125834205424, 2624096058047281, 117620219281363852, 5653607876781921463, 290035426344483253816, 15814774125898034896129
Offset: 0

Views

Author

Miklos Kristof, Mar 16 2005

Keywords

Comments

Primes in this sequence include: a(2)=31, a(4)=5233. Semiprimes in this sequence include: a(1) = 2^2, a(6) = 31 * 67129, a(8) = 127 * 11676991. - Jonathan Vos Post, Mar 17 2005

Crossrefs

Programs

  • Maple
    seq(sum('binomial(k,i)^2*i!*3^i', 'i'=0..k),k=0..30);
  • Mathematica
    f[n_] := Sum[k!*3^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 16}] (* or *)
    Range[0, 16]! CoefficientList[ Series[1/(1 - 3x)*Exp[x/(1 - 3x)], {x, 0, 16}], x] (* Robert G. Wilson v, Mar 16 2005 *)

Formula

E.g.f.: 1/(1-3x)*exp(x/(1-3x)).
E.g.f.: exp(3*x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. [Paul D. Hanna, Nov 18 2011]
a(n) = 2*(3*n-1)*a(n-1) - 9*(n-1)^2*a(n-2). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ (3*n)^(n+1/4)*exp(2*sqrt(n/3)-n-1/6)/sqrt(2) * (1 + 103/(144*sqrt(3*n))). - Vaclav Kotesovec, Sep 29 2013

Extensions

More terms from Robert G. Wilson v, Mar 16 2005

A331658 E.g.f.: exp(x/(1 - 2*x)) / (1 - x).

Original entry on oeis.org

1, 2, 9, 64, 617, 7446, 107377, 1795844, 34114929, 724822282, 17018900921, 437402060712, 12208463140249, 367629791490014, 11876750557295457, 409663873470828076, 15023747377122799457, 583644746007467984274, 23939828792355240206569, 1033788018952899566018192
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x/(1 - 2 x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[Binomial[n, k]^2 k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * k! * A000262(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * k! * A025168(n-k).
a(n) ~ 2^(n + 1/4) * n^(n - 1/4) * exp(-1/4 + sqrt(2*n) - n) * (1 - 23*sqrt(2) / (48*sqrt(n))). - Vaclav Kotesovec, Jan 26 2020
Showing 1-9 of 9 results.