cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A069063 Composite k such that A029939(k) > k*(k+1)/2 where A029939(k) = Sum_{d|k} phi(d)^2.

Original entry on oeis.org

25, 49, 55, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 125, 129, 133, 141, 143, 145, 155, 159, 161, 169, 175, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 245, 247, 249, 253, 259, 265, 267, 275, 287, 289, 291, 295
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Cf. A029939.

A127473 a(n) = phi(n)^2.

Original entry on oeis.org

1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Number of maps of the form j |--> m*j + d with gcd(m, n) = 1 and gcd(d, n) = 1 from [1, 2, ..., n] to itself. - Joerg Arndt, Aug 29 2014
Right border of A127474.
Equals the Mobius transform (A054525) of A029939. - Gary W. Adamson, Aug 20 2008
From Jianing Song, Apr 14 2019: (Start)
a(n) is the number of solutions to gcd(xy, n) = 1 with x, y in [0, n-1].
Let Z_n be the ring of integers modulo n, then a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - x) (or equivalently, Z_n[x]/(x^2 + x)) with discriminant d = 1 (that is, a(n) is the size of the group G(n) = (Z_n[x]/(x^2 - x))*). Actually, G(n) is isomorphic to (Z_n)* X (Z_n)*. (End)

Examples

			a(5) = 16 since phi(5) = 4.
		

Crossrefs

Similar sequences: A082953 (size of (Z_n[x]/(x^2 - 1))*, d = 4), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

Formula

a(n) = A000010(n)^2.
Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011
Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020
Sum_{k>=1} (-1)^k/a(k) = (1/7) * A109695. - Amiram Eldar, Nov 11 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime}(1 - (2*p-1)/p^3) = A065464 / 3 = 0.142749... . - Amiram Eldar, Oct 25 2022
a(n) = Sum_{d|n} mu(n/d)*phi(n*d). - Ridouane Oudra, Jul 23 2025

A062952 Multiplicative with a(p^e) = (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1).

Original entry on oeis.org

1, 4, 9, 18, 25, 36, 49, 78, 87, 100, 121, 162, 169, 196, 225, 326, 289, 348, 361, 450, 441, 484, 529, 702, 645, 676, 807, 882, 841, 900, 961, 1334, 1089, 1156, 1225, 1566, 1369, 1444, 1521, 1950, 1681, 1764, 1849, 2178, 2175, 2116, 2209, 2934, 2443, 2580
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

If k is squarefree (cf. A005117) then A062952(k) = k^2. - Benoit Cloitre, Apr 16 2002
Inverse Möbius transform of A062354(n). - Wesley Ivan Hurt, Jul 26 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{d|n} phi(d)*sigma(d).
a(n) = Sum_{k=1..n} sigma(n/gcd(n, k)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A183699 * A330523 / 3. - Amiram Eldar, Oct 30 2022

A062949 Multiplicative with a(p^e) = ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1).

Original entry on oeis.org

1, 3, 5, 9, 9, 15, 13, 25, 23, 27, 21, 45, 25, 39, 45, 65, 33, 69, 37, 81, 65, 63, 45, 125, 69, 75, 95, 117, 57, 135, 61, 161, 105, 99, 117, 207, 73, 111, 125, 225, 81, 195, 85, 189, 207, 135, 93, 325, 139, 207, 165, 225, 105, 285, 189, 325, 185, 171, 117, 405
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

Inverse Mobius transform of A062355.

Crossrefs

Programs

  • Maple
    A062949 := proc(n) add(numtheory[phi](d)*numtheory[tau](d), d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Feb 09 2011
  • Mathematica
    f[p_, e_] := ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{d|n} phi(d)*tau(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n, k)).
a(n) = Sum_{d|n} d*uphi(n/d), where uphi() = A047994(). - Vladeta Jovovic, Mar 16 2004

A342471 a(n) = Sum_{d|n} phi(d)^n.

Original entry on oeis.org

1, 2, 9, 18, 1025, 130, 279937, 65794, 10078209, 2097154, 100000000001, 16789506, 106993205379073, 156728328194, 35185445863425, 281479271743490, 295147905179352825857, 203119913861122, 708235345355337676357633, 1152923703631151106
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^n &]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^n);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n-1).
G.f.: Sum_{k>=1} (phi(k)*x)^k/(1 - (phi(k)*x)^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^n/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A062367 Multiplicative with a(p^e) = (e+1)*(e+2)*(2*e+3)/6.

Original entry on oeis.org

1, 5, 5, 14, 5, 25, 5, 30, 14, 25, 5, 70, 5, 25, 25, 55, 5, 70, 5, 70, 25, 25, 5, 150, 14, 25, 30, 70, 5, 125, 5, 91, 25, 25, 25, 196, 5, 25, 25, 150, 5, 125, 5, 70, 70, 25, 5, 275, 14, 70, 25, 70, 5, 150, 25, 150, 25, 25, 5, 350, 5, 25, 70, 140, 25, 125, 5, 70, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Crossrefs

Programs

  • Maple
    A062367 := proc(n)
        add(numtheory[tau](d)^2,d=numtheory[divisors](n)) ;
    end proc:
    seq(A062367(n),n=1..40) ; # R. J. Mathar, May 15 2025
  • Mathematica
    {1}~Join~Array[Times @@ Map[((# + 1) (# + 2) (2 # + 3))/6 &, FactorInteger[#][[All, -1]] ] &, 70, 2] (* or *)
    Array[DivisorSum[#, DivisorSigma[0, #]^2 &] &, 71] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^2) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{i|n, j|n} tau(gcd(i, j)) = Sum_{d|n} tau(d)^2.
a(n) = Sum_{i|n, j|n} tau(i)*tau(j)/tau(lcm(i, j)), where tau(n) = number of divisors of n, cf. A000005.
Dirichlet convolution of A035116 and A000012 (i.e., inverse Mobius transform of A035116). Dirichlet g.f.: zeta^5(s)/zeta(2s). - R. J. Mathar, Feb 03 2011
G.f.: Sum_{n>=1} A000005(n)^2*x^n/(1-x^n). - Mircea Merca, Feb 26 2014
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(tau(k)^2/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
Dirichlet convolution of A007426 and A008966. Dirichlet convolution of A007425 and A034444. - R. J. Mathar, Jun 05 2020
Let b(n), n > 0, be Dirichlet inverse of a(n). Then b(n) is multiplicative with b(p^e) = (-1)^e*(Sum_{i=0..e} binomial(4,i)) for prime p and e >= 0, where binomial(n,k)=0 if n < k; abs(b(n)) is multiplicative and has the Dirichlet g.f.: (zeta(s))^5/(zeta(2*s))^4. - Werner Schulte, Feb 07 2021
a(n) = Sum_{d divides n} tau(d^2)*tau(n/d), Dirichlet convolution of A048691 and A000005. - Peter Bala, Jan 26 2024

A065018 a(n) = Sum_{d|n} sigma(d)^2.

Original entry on oeis.org

1, 10, 17, 59, 37, 170, 65, 284, 186, 370, 145, 1003, 197, 650, 629, 1245, 325, 1860, 401, 2183, 1105, 1450, 577, 4828, 998, 1970, 1786, 3835, 901, 6290, 1025, 5214, 2465, 3250, 2405, 10974, 1445, 4010, 3349, 10508, 1765, 11050, 1937, 8555, 6882
Offset: 1

Views

Author

Vladeta Jovovic, Nov 19 2001

Keywords

Crossrefs

Programs

  • PARI
    { for (n=1, 1000, a=sumdiv(n, d, sigma(d)^2); write("b065018.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^2*x^k/(1-x^k))) \\ Seiichi Manyama, May 08 2021

Formula

Dirichlet convolution of A072861 and A000012. Dirichlet g.f.: zeta^2(s)*zeta^2(s-1)*zeta(s-2)/zeta(2s-2). - R. J. Mathar, Feb 03 2011
Sum_{k=1..n} a(k) ~ 5 * Zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Feb 01 2019
From Seiichi Manyama, May 08 2021: (Start)
G.f.: Sum_{k >= 1} sigma(k)^2 * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p+1)^2. (End)

A338997 Number of (i,j,k) in {1,2,...,n}^3 such that gcd(n,i) = gcd(n,j) = gcd(n,k).

Original entry on oeis.org

1, 2, 9, 10, 65, 18, 217, 74, 225, 130, 1001, 90, 1729, 434, 585, 586, 4097, 450, 5833, 650, 1953, 2002, 10649, 666, 8065, 3458, 6057, 2170, 21953, 1170, 27001, 4682, 9009, 8194, 14105, 2250, 46657, 11666, 15561, 4810, 64001, 3906, 74089, 10010, 14625, 21298, 97337, 5274, 74305, 16130
Offset: 1

Views

Author

Benoit Cloitre, Dec 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^3 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2020 *)
  • PARI
    a(n)=sumdiv(n,d,eulerphi(d)^3)
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^2); \\ Seiichi Manyama, Mar 13 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^3*x^k/(1-x^k))) \\ Seiichi Manyama, Mar 13 2021

Formula

a(n) = Sum_{d|n} phi(d)^3.
From Seiichi Manyama, Mar 13 2021: (Start)
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^2.
G.f.: Sum_{k>=1} phi(k)^3 * x^k/(1 - x^k). (End)
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^2 (p^(3*e)-1))/(p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^4/360) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.09123656748... . (End)

A342473 a(n) = Sum_{d|n} phi(d)^d.

Original entry on oeis.org

1, 2, 9, 18, 1025, 74, 279937, 65554, 10077705, 1049602, 100000000001, 16777306, 106993205379073, 78364444034, 35184372089865, 281474976776210, 295147905179352825857, 101559966746186, 708235345355337676357633, 1152921504607896594, 46005119909369701746057, 10000000000100000000002
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^# &]; Array[a, 20] (* Amiram Eldar, Mar 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^d);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n/gcd(k, n)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n/gcd(k, n) - 1).
G.f.: Sum_{k>=1} (phi(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^gcd(n,k)/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A342470 a(n) = Sum_{d|n} phi(d)^4.

Original entry on oeis.org

1, 2, 17, 18, 257, 34, 1297, 274, 1313, 514, 10001, 306, 20737, 2594, 4369, 4370, 65537, 2626, 104977, 4626, 22049, 20002, 234257, 4658, 160257, 41474, 106289, 23346, 614657, 8738, 810001, 69906, 170017, 131074, 333329, 23634, 1679617, 209954, 352529, 70418
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^4 &]; Array[a, 40] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^4);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^4*x^k/(1-x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^3.
G.f.: Sum_{k>=1} phi(k)^4 * x^k/(1 - x^k).
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^3*(p^(4*e)-1))/(p^3 + p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.05936545607... . (End)
Showing 1-10 of 14 results. Next