cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A005237 Numbers k such that k and k+1 have the same number of divisors.

Original entry on oeis.org

2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 104, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 189, 201, 202, 205, 213, 214, 217, 218, 230, 231, 242, 243, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 344, 374, 375, 381, 387
Offset: 1

Views

Author

Keywords

Comments

Is a(n) asymptotic to c*n with 9 < c < 10? - Benoit Cloitre, Sep 07 2002
Let S = {(n, a(n)): n is a positive integer < 2*10^5}, where {a(n)} is the above sequence. The best-fit (least squares) line through S has equation y = 9.63976*x - 1453.76. S is very linear: the square of the correlation coefficient of {n} and {a(n)} is about 0.999943. - Joseph L. Pe, May 15 2003
I conjecture the contrary: the sequence is superlinear. Perhaps a(n) ~ n log log n. - Charles R Greathouse IV, Aug 17 2011
Erdős proved that this sequence is superlinear. Is a more specific result known? - Charles R Greathouse IV, Dec 05 2012
Heath-Brown proved that this sequence is infinite. Hildebrand and Erdős, Pomerance, & Sárközy show that n sqrt(log log n) << a(n) << n (log log n)^3, where << is Vinogradov notation. - Charles R Greathouse IV, Oct 20 2013

Examples

			14 is in the sequence because 14 and 15 are both in A030513. 104 is in the sequence because 104 and 105 are both in A030626.  - _R. J. Mathar_, Jan 09 2022
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A005237Q = DivisorSigma[0, #] == DivisorSigma[0, # + 1] &; Select[Range[387], A005237Q] (* JungHwan Min, Mar 02 2017 *)
    SequencePosition[DivisorSigma[0,Range[400]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 25 2019 *)
  • PARI
    is(n)=numdiv(n)==numdiv(n+1) \\ Charles R Greathouse IV, Aug 17 2011
    
  • Python
    from sympy import divisor_count as tau
    [n for n in range(1,401) if tau(n) == tau(n+1)] # Karl V. Keller, Jr., Jul 10 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A092759 a(n) = prime(n)^7.

Original entry on oeis.org

128, 2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Comments

Seventh powers of prime numbers. - Wesley Ivan Hurt, Mar 27 2014

Examples

			a(1) = 128 since the seventh power of the first prime is 2^7 = 128. - _Wesley Ivan Hurt_, Mar 27 2014
		

Crossrefs

Subsequence of A030626.

Programs

Formula

a(n) = A086874(n-1), n>1. - R. J. Mathar, Sep 08 2008
a(n) = A000040(n)^7 = A001015(A000040(n)). - Wesley Ivan Hurt, Mar 27 2014
Sum_{n>=1} 1/a(n) = P(7) = 0.0082838328... (A085967). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(7)/zeta(14) = A013665/A013672.
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(7) = 1/A013665. (End)

A137492 Numbers with 29 divisors.

Original entry on oeis.org

268435456, 22876792454961, 37252902984619140625, 459986536544739960976801, 144209936106499234037676064081, 15502932802662396215269535105521, 28351092476867700887730107366063041
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
28th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

A000005(a(n))=29.
a(n)=A000040(n)^(29-1)=A000040(n)^(28). - Omar E. Pol, May 06 2008

A030627 Numbers with 9 divisors.

Original entry on oeis.org

36, 100, 196, 225, 256, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6561, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^8 (8th row of A120458) or p^2*r^2 (A085986), where p and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Mathematica
    Select[Range[90000],DivisorSigma[0,#]==9&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==9 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A030627(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=isqrt(x))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(isqrt(s)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 9. - Juri-Stepan Gerasimov, Oct 10 2009
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(8) = 0.0678286..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A030634 Numbers with 16 divisors.

Original entry on oeis.org

120, 168, 210, 216, 264, 270, 280, 312, 330, 378, 384, 390, 408, 440, 456, 462, 510, 520, 546, 552, 570, 594, 616, 640, 680, 690, 696, 702, 714, 728, 744, 750, 760, 770, 798, 858, 870, 888, 896, 910, 918, 920, 930, 945, 952, 966, 984, 1000
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^15 (subset of A010803), p*q^7, p*q*r^3 or p^3*q^3, or p*q*r*s, where p, q, r and s are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

A067004 Number of numbers <= n with same number of divisors as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    R:= Vector(N):
    for n from 1 to N do
      v:= numtheory:-tau(n);
      R[v]:= R[v]+1;
      A[n]:= R[v];
    od:
    seq(A[n],n=1..N); # Robert Israel, May 04 2015
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    a(n)=my(d=numdiv(n)); sum(k=1,n,numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015

A274357 Numbers n such that n and n+1 both have 8 divisors.

Original entry on oeis.org

104, 135, 189, 230, 231, 285, 296, 344, 374, 375, 429, 434, 609, 645, 663, 664, 741, 776, 782, 805, 874, 902, 903, 969, 986, 1001, 1015, 1022, 1029, 1065, 1085, 1095, 1105, 1106, 1112, 1130, 1161, 1208, 1221, 1245, 1265, 1269, 1309, 1310, 1334, 1335, 1374, 1406, 1431
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A030626.
Numbers n such that n and n+1 both have k divisors: A039832 (k=4), A049103 (k=6), A274357 (k=8), A215197 (k=10), A174456 (k=12), A274358 (k=14), A274359 (k=16), A274360 (k=18), A274361 (k=20), A274366 (k=22), A274362 (k=24), A274363 (k=26), A274364 (k=28), A274365 (k=30).
Cf. A000005.

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[2000]],{8,8}][[All,1]] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    is(n)=numdiv(n)==8 && numdiv(n+1)==8

A073915 Triangle read by rows in which the n-th row contains the first n numbers with n divisors.

Original entry on oeis.org

1, 2, 3, 4, 9, 25, 6, 8, 10, 14, 16, 81, 625, 2401, 14641, 12, 18, 20, 28, 32, 44, 64, 729, 15625, 117649, 1771561, 4826809, 24137569, 24, 30, 40, 42, 54, 56, 66, 70, 36, 100, 196, 225, 256, 441, 484, 676, 1089, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

The first row contains the 1. The 2nd row contains the beginning of A000040. The 3rd contains the beginning of A001248, the 4th through 7th A030513 to A030516. The 8th through 20th rows come from A030626 to A030638. - R. J. Mathar, Mar 23 2007

Examples

			1;
2,3;
4,9,25;
6,8,10,14;
16,81,625,2401,14641;
...
		

Crossrefs

Cf. A073916.

Programs

  • Mathematica
    d = Table[Length[Divisors[n]], {n, 2000}]; t = {}; n = 0; ok = True; While[ok, n++; If[PrimeQ[n], AppendTo[t, Prime[Range[n]]^(n - 1)], c = Flatten[Position[d, n, 1, n]]; If[Length[c] >= n, AppendTo[t, c], ok = False]]]; Flatten[t] (* T. D. Noe, Jun 23 2013 *)

Extensions

Corrected and extended by Sascha Kurz, Jan 28 2003

A111398 Numbers which are the cube roots of the product of their proper divisors.

Original entry on oeis.org

1, 24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, 114, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 258, 266, 273, 282, 285, 286, 290, 296, 297
Offset: 1

Views

Author

Ant King, Nov 11 2005

Keywords

Comments

This sequence is actually the sequence of 4-multiplicatively perfect numbers all of whose elements (>1) have prime signature {7}, {1,3} or {1,1,1}.

Crossrefs

Cf. A048945, A111399. Essentially the same as A030626.

Programs

  • Mathematica
    Select[Range[300],Surd[Times@@Most[Divisors[#]],3]==#&] (* Harvey P. Dale, Nov 16 2015 *)
  • PARI
    isok(n) = {prd = 1; fordiv(n, d, prd = prd*d); prd == n^4;} \\ Michel Marcus, Oct 04 2013

Formula

1 together with numbers with 8 divisors. - Vladeta Jovovic, Nov 12 2005

Extensions

More terms from Michel Marcus, Oct 04 2013
Showing 1-10 of 27 results. Next